计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (13): 156-158.

• 数据库、信号与信息处理 • 上一篇    下一篇

信号处理中基于最小二乘法的提升小波的构造

梁 茜1,丁宣浩1,何郁波2   

  1. 1.桂林电子科技大学 数学与计算科学学院,桂林 541004
    2.怀化学院 数学系,湖南 怀化 418008
  • 收稿日期:2007-08-21 修回日期:2007-11-19 出版日期:2008-05-01 发布日期:2008-05-01
  • 通讯作者: 梁 茜

Construction of compactly supported biorthogonal wavelet based on lifting scheme

LIANG Qian1,DING Xuan-hao1,HE Yu-bo2   

  1. 1.School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China
    2.Department of Mathematics,Huaihua University,Huaihua,Hunan 418008,China
  • Received:2007-08-21 Revised:2007-11-19 Online:2008-05-01 Published:2008-05-01
  • Contact: LIANG Qian

摘要: 在信号处理的应用背景下研究提升小波的构造方法。在提升小波的构造过程中预测算子和更新算子的选取不能混为一谈,为了更准确地将信号分解成低频分量和高频分量,提出更新算子的选取标准是各分量的和等于1/2,利用最小二乘法选取预测算子,并将构造出的提升小波运用于信号消噪,进一步研究预测算子和更新算子的选取规律,得到了较好的实验效果,验证了结论的正确性和实用性。

关键词: 提升方案, 更新算子, 预测算子, 最小二乘法

Abstract: When construct the lifting wavelet,the methods choosing predicting operator and updating operator are different.In this paper,we make a new criteria how to choose the updating operator in order to decompose signal into low frequency components and high frequency components more accurately,which is that the sum of the updating operator’s components is 1/2,and then we choose predicting operator according to the least square theory.Some examples of lifting wavelet are applied to signal de-noising.We search the law of choosing predicting and updating operator,and get a good de-noising result.It proves that this method is valid.

Key words: lifting scheme, updating operator, predicting operator, least square theory