计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 297-305.DOI: 10.3778/j.issn.1002-8331.2311-0299

• 图形图像处理 • 上一篇    下一篇

三维点云双重补全网络

吴萌,严瑞祺,孙增国,赵怀栋,何芊平   

  1. 1.西安建筑科技大学 信息与控制工程学院,西安 710055
    2.西安建筑科技大学 交叉创新研究院,西安 710055
    3.陕西师范大学 计算机科学学院,西安 710119
    4.西安建筑科技大学 艺术学院,西安 710055
  • 出版日期:2025-04-01 发布日期:2025-04-01

3D Point Cloud Dual Completion Network

WU Meng, YAN Ruiqi, SUN Zengguo, ZHAO Huaidong, HE Qianping   

  1. 1.School of Information and Control Engineering , Xi’an University of Architecture and Technology, Xi’an 710055, China
    2.Institute for Interdisciplinary Innovate Research, Xi’an University of Architecture and Technology, Xi’an 710055, China
    3.School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
    4.School of Art, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Online:2025-04-01 Published:2025-04-01

摘要: 受到传感器性能与采集遮挡等因素的影响,点云采集形成的连续缺失会严重影响被采集对象的形态与结构的表达。因此,点云的补全成为三维点云重建中非常重要的环节。目前经过编码器-解码器(encoder-decoder)框架来提取全局特征预测完整点云的点云补全网络,会使输入点云的几何结构被破坏,造成位移损失,使点云中点的分布不均匀。为了改善上述问题,搭建了一个点云双重补全网络,第一重生成粗糙点云,再经过第二重精细化生成更为精细的点云数据。并增加了一种基于多头自注意的全局特征感知模块和特征扩展模块。通过注意力机制感知聚合点云特征,增强每个点的特征维度,有效地增强了点之间的相关性。最终,在编码器-解码器框架中利用这两个模块,来增强点云补全的完整性和精细性,可以有效地恢复点云的结构。经过实验测试表明:在PCN数据集和Completion3D数据集中平均CD分别达到[5.98×10-3]和[6.11×10-3],在可视化结果中与其他方法相比得到了更好的效果。

关键词: 点云补全, 多头注意力, 特征扩展, 双重网络

Abstract: Due to factors such as sensor performance and acquisition obstructions, continuous gaps in point cloud collection can significantly impact the representation of the form and structure of the captured object. Therefore, completing the point cloud becomes an essential task in three-dimensional point cloud analysis. Currently, employing an encoder-decoder framework to extract global features and predict complete point clouds in point cloud completion networks can disrupt the geometric structure of input point clouds, leading to displacement loss and uneven distribution of points within the cloud. To address these issues, a dual-stage point cloud completion network has been developed. The first stage generates coarse point clouds, followed by the refinement stage that produces finer point clouds. This approach incorporates a global feature perception module based on multi-head self-attention and a feature expansion module. By leveraging attention mechanisms to aggregate point cloud features, it enhances the feature dimensions of each point, effectively improving the inter-point correlations. Subsequently, within the encoder-decoder framework, these modules are utilized to enhance both the completeness and refinement of point cloud completion, effectively restoring the structure of the point cloud. Experimental tests have demonstrated that on the PCN dataset and Completion3D dataset, the average Chamfer distance achieves [5.98×10-3]and [6.11×10-3], respectively. The visual results show superior performance compared to other methods in the visualization results.

Key words: point cloud completion, multi-head attention, feature expansion, dual-network