[1] BERGER M, TAGLIASACCHI A, SEVERSKY L M, et al. State of the art in surface reconstruction from point clouds[J]. Eurographics, 2014, 1: 161-185.
[2] DAVIS J, MARSCHNER S R, GARR M, et al. Filling holes in complex surfaces using volumetric diffusion[C]//Proceedings of the 1st International Symposium on 3D Data Processing Visualization and Transmission. Piscataway: IEEE, 2002: 428-441.
[3] MITRA N J, GUIBAS L J, PAULY M, et al. Partial and approximate symmetry detection for 3D geometry[J]. ACM Transactions on Graphics, 2006, 25(3): 560-568.
[4] MITRA N J, PAULY M, WAND M, et al. Symmetry in 3D geometry: extraction and applications[J]. Computer Graphics Forum, 2013, 32(6): 1-23.
[5] DAI A, QI C R, NIE?NER M. Shape completion using 3D-encoder-predictor CNNs and shape synthesis[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5868-5877.
[6] WANG W Y, HUANG Q G, YOU S Y, et al. Shape inpainting using 3D generative adversarial network and recurrent convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2298-2306.
[7] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 206-215.
[8] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 652-660.
[9] QI C R, YI L, SU H, et al. PointNet++[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114.
[10] LI X K, LI C S, TONG Z K, et al. Campus3D: a photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 238-246.
[11] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of the 2018 International Conference on 3D Vision. Piscataway: IEEE, 2018: 728-737.
[12] TCHAPMI L P, KOSARAJU V, REZATOFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 383-392.
[13] HUANG Z T, YU Y K, XU J W, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7662-7670.
[14] XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 365-381.
[15] WANG X G, ANG M H, LEE G H. Cascaded refinement network for point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 790-799.
[16] XIANG P, WEN X, LIU Y S, et al. Snowflake point deconvolution for point cloud completion and generation with skip-transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6320-6338.
[17] ZHANG W X, YAN Q G, XIAO C X, et al. Detail preserved point cloud completion via separated feature aggregation[C]//Proceedings of the 16th European Conference on Computer Vision. New York: ACM, 2020: 512-528.
[18] PAN L, CHEN X, CAI Z, et al. Variational relational point completion network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8524-8533.
[19] WEN X, XIANG P, HAN Z Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7439-7448.
[20] WANG X G, ANG M H, LEE G H. Voxel-based network for shape completion by leveraging edge generation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13169-13178.
[21] ASHISH V. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[22] VINICIUS M, FLORENCIA C. Point cloud transformers applied to collider physics[J]. Machine Learning: Science and Technology, 2021, 2(3): 035027.
[23] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
[24] YU X M, RAO Y M, WANG Z Y, et al. PoinTr: diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 12498-12507.
[25] WANG J, CUI Y, GUO D Y, et al. PointAttN: you only need attention for point cloud completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5472-5480.
[26] ZHANG W X, ZHOU H J, DONG Z, et al. Point cloud completion via skeleton-detail transformer[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(10): 4229-4242.
[27] PAN L, CHEW C M, LEE G H. PointAtrousGraph: deep hierarchical encoder-decoder with point atrous convolution for unorganized 3D points[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 1113-1120.
[28] FAN H Q, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 605-613.
[29] VAKALOPOULOU M, CHASSAGNON G, BUS N, et al. AtlasNet: multi-atlas non-linear deep networks for medical image segmentation[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 658-666.
[30] WANG L, HUANG Y C, SHAN J, et al. MSNet: multi-scale convolutional network for point cloud classification[J]. Remote Sensing, 2018, 10(4): 612.
[31] NIE Y Y, LIN Y Q, HAN X G, et al. Skeleton-bridged point completion: from global inference to local adjustment[C]//Advances in Neural Information Processing Systems, 2020, 33: 16119-16130.
[32] WEN X, LI T Y, HAN Z Z, et al. Point cloud completion by skip-attention network with hierarchical folding[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1939-1948.
[33] LI S S, GAO P, TAN X Y, et al. ProxyFormer: proxy alignment assisted point cloud completion with missing part sensitive transformer[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9466-9475.
[34] ZHU Z, CHEN H H, HE X, et al. SVDFormer: complementing point cloud via self-view augmentation and self-structure dual-generator[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 14508-14518.
[35] YANG H, CHEN Y F, SONG K Y, et al. Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1450-1467.
[36] WANG Y D, TAN D J, NAVAB N, et al. SoftPoolNet: shape descriptor for point cloud completion and classification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 70-85. |