[1] DANTZIG G B. Discrete-variable extremum problems[J]. Operations Research, 1957, 5(2): 266-288.
[2] HAN K H, KIM J H. Genetic quantum algorithm and its app-lication to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway: IEEE, 2000: 1354-1360.
[3] CACCHIANI V, IORI M, LOCATELLI A, et al. Knapsack problems: an overview of recent advances. part II: multiple, multidimensional, and quadratic knapsack problems[J]. Compu-ters & Operations Research, 2022, 143: 105693.
[4] FLESZAR K. A branch-and-bound algorithm for the quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2022, 298(1): 89-98.
[5] 何琨, 任硕, 郭子杰, 等. 基于贪心回溯的求解完全0-1背包问题局部动态规划算法[J]. 华中科技大学学报(自然科学版), 2024, 52(2): 16-21.
HE K, REN S, GUO Z J, et al. Greedy backtracking based local dynamic programming for complete 0-1 knapsack problem[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(2): 16-21.
[6] ADOUANI Y, MASMOUDI M, JARRAY F, et al. Iterative int-eger linear programming-based heuristic for solving the multiple-choice knapsack problem with setups[J]. Expert Systems with Applications, 2024, 242: 122835.
[7] HE Y C, ZHANG X L, LI W B, et al. An efficient binary differential evolution algorithm for the multidimensional knapsack problem[J]. Engineering with Computers, 2021, 37(1): 745-761.
[8] 吴聪聪, 贺毅朝, 赵建立. 求解折扣{0-1}背包问题的新遗传算法[J]. 计算机工程与应用, 2020, 56(7): 57-66.
WU C C, HE Y C, ZHAO J L. New genetic algorithm for discounted {0-1} knapsack problem[J]. Computer Engineering and Applications, 2020, 56(7): 57-66.
[9] BANSAL J C, DEEP K. A modified binary particle swarm optimization for knapsack problems[J]. Applied Mathematics and Computation, 2012, 218(22): 11042-11061.
[10] WEI Z Q, HAO J K. Multistart solution-based tabu search for the set-union knapsack problem[J]. Applied Soft Computing, 2021, 105: 107260.
[11] 高思齐, 邢玉轩, 肖侬, 等. 求解01背包问题的贪婪蛙跳算法[J]. 计算机科学, 2018, 45(7): 73-77.
GAO S Q, XING Y X, XIAO N, et al. Greedy frog leaping algorithm for 01 knapsack problem[J]. Computer Science, 2018, 45(7): 73-77.
[12] LI Y, HE Y C, LIU X J, et al. A novel discrete whale optimization algorithm for solving knapsack problems[J]. Applied Intelligence, 2020, 50(10): 3350-3366.
[13] ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2007: 4661-4667.
[14] ALI I M, ESSAM D, KASMARIK K. Novel binary differential evolution algorithm for knapsack problems[J]. Information Sciences, 2021, 542: 177-194.
[15] MORADI N, KAYVANFAR V, RAFIEE M. An efficient population-based simulated annealing algorithm for 0-1 knapsack problem[J]. Engineering with Computers, 2022, 38(3): 2771-2790.
[16] RIZK-ALLAH R M, HASSANIEN A E. New binary bat algorithm for solving 0-1 knapsack problem[J]. Complex & Intelligent Systems, 2018, 4(1): 31-53.
[17] 刘雪静, 贺毅朝, 吴聪聪, 等. 求解0-1背包问题的混沌二进制乌鸦算法[J]. 计算机工程与应用, 2018, 54(10): 173-179.
LIU X J, HE Y C, WU C C, et al. Chaotic binary crow search algorithm for 0-1 knapsack problem[J]. Computer Engineering and Applications, 2018, 54(10): 173-179.
[18] ZHANG S, LIU S Y. A discrete improved artificial bee colony algorithm for 0-1 knapsack problem[J]. IEEE Access, 2019, 7: 104982-104991.
[19] FENG Y H, WANG G G, DONG J Y, et al. Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem[J]. Computers & Electrical Engineering, 2018, 67: 454-468.
[20] WANG Y L, WANG W L. Quantum-inspired differential evolution with grey wolf optimizer for 0-1 knapsack problem[J]. Mathematics, 2021, 9(11): 1233.
[21] 李斌, 黄起彬. 面向资源约束项目调度的二阶段帝国竞争算法[J]. 计算机科学与探索, 2023, 17(11): 2620-2639.
LI B, HUANG Q B. Resource-constrained project scheduling problems oriented two-stage imperialist competitive algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2620-2639.
[22] ALINIYA Z, MIRROSHANDEL S A. A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm[J]. Expert Systems with Applic-ations, 2019, 117: 243-266.
[23] ARDALAN Z, KARIMI S, POURSABZI O, et al. A novel imperialist competitive algorithm for generalized traveling salesman problems[J]. Applied Soft Computing, 2015, 26: 546-555.
[24] 王尧, 罗俊仁, 周棪忠, 等. 面向策略探索的强化学习与进化计算方法综述[J]. 计算机科学, 2024, 51(3): 183-197.
WANG Y, LUO J R, ZHOU Y Z, et al. Review of reinforcement learning and evolutionary computation methods for strategy exploration[J]. Computer Science, 2024, 51(3): 183-197.
[25] 王原, 陈名, 邢立宁, 等. 用于求解旅行商问题的深度智慧型蚁群优化算法[J]. 计算机研究与发展, 2021, 58(8): 1586-1598.
WANG Y, CHEN M, XING L N, et al. Deep intelligent ant colony optimization for solving travelling salesman problem[J]. Journal of Computer Research and Development, 2021, 58(8): 1586-1598.
[26] ZHAO J T, HIFI M. A reinforcement learning-driven cooperative scatter search for the knapsack problem with forfeits[J]. Computers & Industrial Engineering, 2024, 198: 110713.
[27] DURGUT R, AYDIN M E, ATLI I. Adaptive operator sele-ction with reinforcement learning[J]. Information Sciences, 2021, 581: 773-790.
[28] SALLAM K M, CHAKRABORTTY R K, RYAN M J. A reinforcement learning based multi-method approach for stochastic resource constrained project scheduling problems[J]. Expert Systems with Applications, 2021, 169: 114479.
[29] ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958.
[30] ZHOU Q, HAO J K, WU Q H. A hybrid evolutionary search for the generalized quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2022, 296(3): 788-803.
[31] 李斌, 唐志斌. 面向异构多背包问题的多级二进制帝国竞争算法[J]. 计算机应用, 2023, 43(9): 2855-2867.
LI B, TANG Z B. Multiple level binary imperialist competitive algorithm for solving heterogeneous multiple knapsack problem[J]. Journal of Computer Applications, 2023, 43(9): 2855-2867.
[32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[33] WU C C, ZHAO J L, FENG Y H, et al. Solving discounted{0-1} knapsack problems by a discrete hybrid teaching learning-based optimization algorithm[J]. Applied Intelligence, 2020, 50(6): 1872-1888.
[34] 万晓琼, 张惠珍. 求解0-1背包问题的混合蝙蝠算法[J]. 计算机应用研究, 2019, 36(9): 2579-2583.
WAN X Q, ZHANG H Z. Hybrid bat algorithm for solving 0-1 knapsack problem[J]. Application Research of Computers, 2019, 36(9): 2579-2583.
[35] FENG Y H, WANG G G, GAO X Z. A novel hybrid cuckoo search algorithm with global harmony search for 0-1 knapsack problems[J]. International Journal of Computational Int-elligence Systems, 2016, 9(6): 1174-1190.
[36] 刘生建, 杨艳, 周永权. 求解0-1背包问题的二进制狮群算法[J]. 计算机工程与科学, 2019, 41(11): 2079-2087.
LIU S J, YANG Y, ZHOU Y Q. A binary lion swarm algorithm for solving 0-1 knapsack problem[J]. Computer Engineering & Science, 2019, 41(11): 2079-2087.
[37] MIRJALILI S, MIRJALILI S M, YANG X S. Binary bat algorithm[J]. Neural Computing and Applications, 2014, 25(3): 663-681.
[38] 李枝勇, 马良, 张惠珍. 求解0/1背包问题的自适应元胞粒子群算法[J]. 计算机工程, 2014, 40(10): 198-203.
LI Z Y, MA L, ZHANG H Z. Adaptive cellular particle swarm algorithm for solving 0/1 knapsack problem[J]. Computer Engineering, 2014, 40(10): 198-203.
[39] PENG H, WU Z J, SHAO P, et al. Dichotomous binary differential evolution for knapsack problems[J]. Mathematical Problems in Engineering, 2016(1): 5732489.
[40] CHEN Y, XIE W C, ZOU X F. A binary differential evolution algorithm learning from explored solutions[J]. Neurocomputing, 2015, 149: 1038-1047.
[41] ERVURAL B, HAKLI H. A binary reptile search algorithm based on transfer functions with a new stochastic repair method for 0-1 knapsack problems[J]. Computers & Industrial Engineering, 2023, 178: 109080.
[42] SHAYANFAR H, GHAREHCHOPOGH F S. Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems[J]. Applied Soft Computing, 2018, 71: 728-746.
[43] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[44] KAUR S, AWASTHI L K, SANGAL A L, et al. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.
[45] ABDEL-BASSET M, MOHAMED R, MIRJALILI S. A binary equilibrium optimization algorithm for 0-1 knapsack problems[J]. Computers & Industrial Engineering, 2021, 151: 106946.
[46] HASHIM F A, HUSSAIN K, HOUSSEIN E H, et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems[J]. Applied Intelligence, 2021, 51(3): 1531-1551.
[47] 陈桢, 钟一文, 林娟. 求解0-1背包问题的混合贪婪遗传算法[J]. 计算机应用, 2021, 41(1): 87-94.
CHEN Z, ZHONG Y W, LIN J. Hybrid greedy genetic algorithm for solving 0-1 knapsack problem[J]. Journal of Computer Applications, 2021, 41(1): 87-94.
[48] FENG Y H, YU X, WANG G G. A novel monarch butterfly optimization with global position updating operator for large-scale 0-1 knapsack problems[J]. Mathematics, 2019, 7(11): 1056.
[49] FENG Y H, YANG J, WU C C, et al. Solving 0-1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing, 2018, 10(2): 135-150.
[50] ZHAN S H, WANG L J, ZHANG Z J, et al. Noising methods with hybrid greedy repair operator for 0-1 knapsack problem[J]. Memetic Computing, 2020, 12(1): 37-50. |