
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 45-60.DOI: 10.3778/j.issn.1002-8331.2503-0066
虎敏,杨军
出版日期:2025-11-01
发布日期:2025-10-31
HU Min, YANG Jun
Online:2025-11-01
Published:2025-10-31
摘要: 随着移动边缘计算(mobile edge computing,MEC)的快速发展,低延迟、高带宽和低能耗的计算需求已成为物联网、智能交通等领域的核心技术之一。区块链作为一种去中心化的分布式技术,以其在数据安全、隐私保护和分布式管理方面的独特优势,进一步推动了MEC系统的技术升级与应用落地。MEC和区块链两种技术相互融合,优势互补。对区块链与移动边缘计算的核心概念和技术特征进行了系统性概述,为理解其融合机理奠定了基础。探讨了区块链在MEC中的关键应用,包括任务调度、资源管理、数据安全、隐私保护、协作通信及共识机制优化。介绍了区块链融合MEC的车联网、医疗健康和无人机等典型应用案例。归纳了技术融合的现有挑战并指出了未来研究方向。
虎敏, 杨军. 移动边缘计算融合区块链的技术与应用综述[J]. 计算机工程与应用, 2025, 61(21): 45-60.
HU Min, YANG Jun. Survey on Integration of Blockchain and Mobile Edge Computing: Technologies and Applications[J]. Computer Engineering and Applications, 2025, 61(21): 45-60.
| [1] ERICSSON. IoT connections outlook: NB-IoT and CAT-M technologies will account for close to 45 Percent of cellular IoT connections in 2024[EB/OL].[2022-01-30]. https://www.ericsson.com/en/mobilityreport/reports/june-2019/iot-connections-outlook. [2] WANG D Y, BIN ABU BAKAR K, ISYAKU B, et al. A comprehensive review on Internet of Things task offloading in multi-access edge computing[J]. Heliyon, 2024, 10(9): e29916. [3] 胡恒, 金凤林, 郎思琪. 移动边缘计算环境中的计算卸载技术研究综述[J]. 计算机工程与应用, 2021, 57(14): 60-74. HU H, JIN F L, LANG S Q. Survey of research on computation offloading technology in mobile edge computing environment[J]. Computer Engineering and Applications, 2021, 57(14): 60-74. [4] MOGHADDASI K, RAJABI S. Blockchain-enhanced offloading in mobile edge computing: a systematic review and survey of current trends and future directions[J]. arXiv:2403.05961, 2024. [5] ABDELHAMID M, SLIMAN L, BEN DJEMAA R, et al. A review on blockchain technology, current challenges, and AI-driven solutions[J]. ACM Computing Surveys, 2024, 57(3): 1-39. [6] BITCOIN.A peer-to-peer electronic cash system[EB/OL].[2019-11-16]. https://bitcoin.org/en/bitcoin-paper. [7] DO T Q, TA M T. Performance analysis of Ethereum smart contracts: a study on gas cost and block size impact[C]//Proceedings of the 2023 IEEE Statistical Signal Processing Workshop. Piscataway: IEEE, 2023: 591-595. [8] SALAMA R, AL-TURJMAN F, BHATLA S, et al. Mobile edge fog, blockchain networking and computing-a survey[C]//Proceedings of the 2023 International Conference on Computational Intelligence, Communication Technology and Networking. Piscataway: IEEE, 2023: 808-811. [9] 任晓旭, 仇超, 邓辉, 等. 边缘智能融合区块链: 研究现状、应用及挑战[J]. 信息与控制, 2024, 53(1): 1-16. REN X X, QIU C, DENG H, et al. Edge intelligent fusion blockchain: research status, application and challenges[J]. Information and Control, 2024, 53(1): 1-16. [10] 白金龙, 曹利峰, 万季玲, 等. 区块链隐私保护技术研究进展[J]. 计算机工程与应用, 2025, 61(2): 19-36. BAI J L, CAO L F, WAN J L, et al. Research progress of blockchain privacy protection technology[J]. Computer Engineering and Applications, 2025, 61(2): 19-36. [11] 王凌, 吴楚格, 范文慧. 边缘计算资源分配与任务调度优化综述[J]. 系统仿真学报, 2021, 33(3): 509-520. WANG L, WU C G, FAN W H. A survey of edge computing resource allocation and task scheduling optimization[J]. Journal of System Simulation, 2021, 33(3): 509-520. [12] 韩益亮, 宋超越, 吴旭光, 等. 区块链与隐私计算融合技术综述[J]. 科学技术与工程, 2024, 24(28): 11945-11963. HAN Y L, SONG C Y, WU X G, et al. Review of integrated technology of blockchain and privacy computing[J]. Science Technology and Engineering, 2024, 24(28): 11945-11963. [13] 周绪, 苗辉, 杨静, 等. 边缘计算资源调度: 历史、架构、建模与方法分析[J]. 计算机集成制造系统, 2025, 31(8): 2695-2726. ZHOU X, MIAO H, YANG J, et al. Edge computing resource scheduling overview: historical perspective, architecture, modeling and method analysis[J]. Computer Integrated Manufacturing Systems, 2025, 31(8): 2695-2726. [14] YANG N, CHEN S, ZHANG H J, et al. Beyond the edge: an advanced exploration of reinforcement learning for mobile edge computing, its applications, and future research trajectories[J]. IEEE Communications Surveys & Tutorials, 2025, 27(1): 546-594. [15] XIE B, CUI H X. Deep reinforcement learning for task offloading in edge computing[C]//Proceedings of the 2024 4th International Conference on Machine Learning and Intelligent Systems Engineering. Piscataway: IEEE, 2024: 250-254. [16] 於怿丰, 任思维, 张鑫帅, 等. 基于数据驱动模型预测控制的无人机轨迹跟踪方法[J]. 兵器装备工程学报, 2024, 45(11): 272-282. YU Y F, REN S W, ZHANG X S, et al. Data-driven model predictive control based method for unmanned aerial vehicle trajectory tracking[J]. Journal of Ordnance Equipment Engineering, 2024, 45(11): 272-282. [17] 冯伟杨, 林思雨, 冯婧涛, 等. 基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略[J]. 电子学报, 2024, 52(2): 385-395. FENG W Y, LIN S Y, FENG J T, et al. Q-learning based joint PC-5/Uu offloading strategy for C-V2X based vehicular edge computing system[J]. Acta Electronica Sinica, 2024, 52(2): 385-395. [18] JIN L D, TANG M, ZHANG M, et al. Fractional deep reinforcement learning for age-minimal mobile edge computing[C]//Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2024: 12947-12955. [19] 蒋守花, 王以伍. SDCN中基于深度强化学习的移动边缘计算任务卸载算法研究[J]. 电信科学, 2024, 40(2): 96-106. JIANG S H, WANG Y W. Research on task offloading algorithm of mobile edge computing based on deep reinforcement learning in SDCN[J]. Telecommunications Science, 2024, 40(2): 96-106. [20] LU Y R, XU C, WANG Y T. Joint computation offloading and trajectory optimization for edge computing UAV: a KNN-DDPG algorithm[J]. Drones, 2024, 8(10): 564. [21] PRIYADARSHNI, KUMAR P, GUPTA N A, et al. Integrating of IOTA-based blockchain with edge computing for task offloading powering the metaverse[J]. Cluster Computing, 2024, 28(2): 90. [22] 孔小爽, 袁健. 基于鸟群人工鱼群算法的区块链移动边缘计算卸载模型[J]. 电子科技, 2024, 37(8): 26-33. KONG X S, YUAN J. Blockchain mobile edge computing offloading model based on bird swarm artificial fish swarm algorithm[J]. Electronic Science and Technology, 2024, 37(8): 26-33. [23] ZHAO D X, ZHANG D W, PEI Q Q, et al. Blockchain-based security deployment and resource allocation in SDN-enabled MEC system[J]. IEEE Internet of Things Journal, 2024, 11(24): 40417-40430. [24] ZHAO J H, HUANG Y W, ZHANG Q M, et al. Edge server and service deployment considering profit with improved PSO in IoV[J]. IEEE Systems Journal, 2025, 19(1): 55-64. [25] 乔珍, 尹传忠, 仇鑫. 基于改进蚁群算法的长航程无人船路径规划[J]. 计算机工程与科学, 2024, 46(10): 1835-1842. QIAO Z, YIN C Z, QIU X. Path planning of long-range unmanned ship based on improved ant colony algorithm[J]. Computer Engineering & Science, 2024, 46(10): 1835-1842. [26] DONG Y N, PEI J H, WU K, et al. Joint optimization in MEC incorporating MD preference: a hybrid GA and AFSA scheme[C]//Proceedings of the 2024 IEEE 100th Vehicular Technology Conference. Piscataway: IEEE, 2024: 1-5. [27] WANG Z H, GUO S T, LIU G Y. SA-DDQN: self-attention mechanism based DDQN for SFC deployment in NFV/MEC-enabled networks[C]//Proceedings of the 2022 IEEE 28th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2023: 720-727. [28] LIN B, CHEN X Z, CHEN X, et al. SGCS: an intelligent Stackelberg-game-based computation offloading and resource pricing scheme in blockchain-enabled MEC for IIoT[J]. IEEE Internet of Things Journal, 2024, 11(16): 26727-26740. [29] CHEN Z Y, ZHOU F, TIAN Y L, et al. A blockchain-based dynamic incentive model in mobile edge computing[C]//Proceedings of the 2024 International Conference on Networking and Network Applications. Piscataway: IEEE, 2024: 54-59. [30] FEMENIAS G, FRANCISCA HINAREJOS M, RIERA-PALOU F, et al. Dynamic spectrum sharing in a blockchain enabled network with multiple cell-free massive MIMO virtual operators[J]. IEEE Access, 2024, 12: 70615-70633. [31] CHEN G, MU X Z, LIANG H J, et al. Distributed RAN slicing based on MATD3 joint with evolutionary game assisted user association for MEC-enabled HetNets[J]. IEEE Transactions on Wireless Communications, 2025, 24(1): 260-276. [32] 范伟, 彭诚, 朱大立, 等. 移动边缘计算网络下基于静态贝叶斯博弈的入侵响应策略研究[J]. 通信学报, 2023, 44(2): 70-81. FAN W, PENG C, ZHU D L, et al. Research on intrusion response strategy based on static Bayesian game in mobile edge computing network[J]. Journal on Communications, 2023, 44(2): 70-81. [33] WANG C, ZHAI D S, ZHANG R N, et al. Latency minimization for UAV-assisted MEC networks with blockchain[J]. IEEE Transactions on Communications, 2024, 72(11): 6854-6866. [34] 马丽, 李英. 基于区块链的视频流边缘计算卸载方案研究[J]. 青岛大学学报(自然科学版), 2024, 37(2): 33-40. MA L, LI Y. Research on blockchain-based edge computing offloading scheme for video streaming[J]. Journal of Qingdao University (Natural Science Edition), 2024, 37(2): 33-40. [35] LIAO Z F, CHENG S W. RVC: a reputation and voting based blockchain consensus mechanism for edge computing-enabled IoT systems[J]. Journal of Network and Computer Applications, 2023, 209: 103510. [36] DJOUDI A, GUELLOUMA Y, CHERROUN H, et al. A scalable federated modular neural network architecture for edge-enabled beyond-5G complex systems[J]. IT Professional, 2024, 26(6): 62-69. [37] LI R X, WANG C, ZHENG Z B, et al. Enhancing federated learning with self-determining mechanism in MEC[C]//Proceedings of the 2024 International Conference on Computing, Networking and Communications. Piscataway: IEEE, 2024: 1006-1010. [38] DENG Y, TANG H H. A privacy protection task offloading algorithm in MEC[C]//Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2024: 2227-2233. [39] ARSHAD U, HALIM Z, ALASMARY H, et al. Futuristic decentralized vehicular network architecture and repairing management system on blockchain[J]. IEEE Internet of Things Journal, 2024, 11(13): 23604-23616. [40] ZHOU J, LUO M, SONG L X, et al. A dynamic group key agreement scheme for UAV networks based on blockchain[J]. Pervasive and Mobile Computing, 2023, 95: 101844. [41] LI W M, LI Z T, YAN Z M, et al. A data encryption and file sharing framework among microservices-based edge nodes with blockchain[J]. Peer-to-Peer Networking and Applications, 2024, 18(1): 24. [42] LI C P, LIU C, LIU P, et al. Blockchain-based privacy-preserving and accountable mobile edge outsourcing computing framework for the metaverse[J]. IEEE Transactions on Green Communications and Networking, 2025, 9(2): 711-724. [43] DATTA S, NAMASUDRA S. Blockchain-based smart contract model for securing healthcare transactions by using consumer electronics and mobile-edge computing[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 4026-4036. [44] YU L S, LI B, YAO Y Z, et al. Efficient and emission-reducing blockchain-enabled multi-UAV-assisted MEC system in IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(24): 40645-40655. [45] DU J B, YU Z T, SUN A J, et al. Secure task offloading in blockchain-enabled MEC networks with improved PBFT consensus[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(2): 1225-1243. [46] QIN L T, LU H C, CHEN Y A, et al. Energy-efficient blockchain-enabled user-centric mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1452-1466. [47] TANG Y, YAN J W, CHAKRABORTY C, et al. Hedera: a permissionless and scalable hybrid blockchain consensus algorithm in multiaccess edge computing for IoT[J]. IEEE Internet of Things Journal, 2023, 10(24): 21187-21202. [48] ZHONG W Y, YANG C, LIANG W, et al. Byzantine fault-tolerant consensus algorithms: a survey[J]. Electronics, 2023, 12(18): 3801. [49] FENG P, LIANG J K, WANG S Z, et al. Hierarchical consensus-based multi-agent reinforcement learning for multi-robot cooperation tasks[C]//Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2024: 642-649. [50] KNUDSEN H, LI J Y, NOTLAND J S, et al. High-performance asynchronous Byzantine fault tolerance consensus protocol[C]//Proceedings of the 2021 IEEE International Conference on Blockchain. Piscataway: IEEE, 2022: 476-483. [51] 程冠杰, 黄诤杰, 邓水光. 基于区块链与边缘计算的物联网数据管理[J]. 物联网学报, 2020, 4(2): 1-9. CHENG G J, HUANG Z J, DENG S G. Data management based on blockchain and edge computing for Internet of Things[J]. Chinese Journal on Internet of Things, 2020, 4(2): 1-9. [52] HAQUE E U, SHAH A, IQBAL J, et al. A scalable blockchain based framework for efficient IoT data management using lightweight consensus[J]. Scientific Reports, 2024, 14: 7841. [53] WANG K Y, TU Z Y, JI Z Z, et al. Faster service with less resource: a resource efficient blockchain framework for edge computing[J]. Computer Communications, 2023, 199: 196-209. [54] ZHANG L C, HANG L, ZU K K, et al. Dynamic vehicle reputation consensus: enhancing IoV communication with a blockchain algorithm[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4788-4806. [55] SUN J Y, SHI Q, JIN G D, et al. Blockchain-enabled IoV: secure communication and trustworthy decision?making[C]//Proceedings of the 2024 IEEE Conference on Dependable and Secure Computing. Piscataway: IEEE, 2024: 104-105. [56] TLEM?ANI K, AZBEG K, SAOUDI E, et al. Empowering diabetes management through blockchain and edge computing: a systematic review of healthcare innovations and challenges[J]. IEEE Access, 2025, 13: 14426-14443. [57] ZHANG Z F, ZENG K W, YI Y X. Blockchain-empowered secure aerial edge computing for AIoT devices[J]. IEEE Internet of Things Journal, 2024, 11(1): 84-94. [58] KUMAR V, ASTHANA A, TRIPATHI G. A systematic literature review of blockchain-assisted UAV communication systems[C]//Proceedings of the 2024 3rd Edition of IEEE Delhi Section Flagship Conference. Piscataway: IEEE, 2025: 1-9. [59] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. [60] 陈涵, 谭北海, 余荣, 等. 基于匹配理论的分布式能源交易区块链分片技术研究[J]. 电测与仪表, 2023, 60(6): 117-124. CHEN H, TAN B H, YU R, et al. Matching theory based sharding blockchain technology for distributed energy transaction[J]. Electrical Measurement & Instrumentation, 2023, 60(6): 117-124. [61] 赵志宇, 谢林江, 耿贞伟, 等. 边缘计算与区块链在智慧用电中的应用[J]. 科技导报, 2024, 42(9): 17-25. ZHAO Z Y, XIE L J, GENG Z W, et al. On interaction between cloud main chain and edge side chain based on cloud-edge collaboration[J]. Science & Technology Review, 2024, 42(9): 17-25. [62] 李立伟. 5G边缘计算、区块链与图书馆智慧建设的融合研究[J]. 大学图书情报学刊, 2023, 41(3): 44-49. LI L W. Research on the integration of 5G edge computing and blockchain in library smart construction[J]. Journal of Academic Library and Information Science, 2023, 41(3): 44-49. [63] KALIDOSS L, THOUTI S, ARUNACHALAM R, et al. An efficient model of enhanced optimization and dilated-GRU based secured multi-access edge computing with blockchain for VANET sector[J]. Expert Systems with Applications, 2025, 260: 125275. [64] GAO X, ZHANG Y P. Advancing remote consultation through the integration of blockchain and ant colony algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16886-16912. |
| [1] | 陈泽宇, 刘丽华, 王尚平. SM9身份认证方案及其应用研究综述[J]. 计算机工程与应用, 2025, 61(5): 18-31. |
| [2] | 李彦, 万征. 深度强化学习在边缘视频传输优化中的应用综述[J]. 计算机工程与应用, 2025, 61(4): 43-58. |
| [3] | 高改梅, 王娜, 刘春霞, 党伟超, 史旭. 基于区块链的可搜索加密电子病历共享方案[J]. 计算机工程与应用, 2025, 61(4): 289-298. |
| [4] | 白金龙, 曹利峰, 万季玲, 李金辉, 杜学绘. 区块链隐私保护技术研究进展[J]. 计算机工程与应用, 2025, 61(2): 19-36. |
| [5] | 敖日格乐, 李雷孝, 杜金泽. 基于区块链的数据共享激励机制研究综述[J]. 计算机工程与应用, 2025, 61(18): 78-98. |
| [6] | 郭思昀, 李雷孝, 杜金泽, 林浩. 基于区块链的联邦学习系统方案研究综述[J]. 计算机工程与应用, 2025, 61(15): 36-53. |
| [7] | 万季玲, 曹利峰, 白金龙, 李金辉, 杜学绘. 面向区块链网络的异常检测方法综述[J]. 计算机工程与应用, 2025, 61(13): 78-99. |
| [8] | 陈彦宇, 黎凯, 付章杰. 基于少样本学习的区块链地址身份推断方法研究[J]. 计算机工程与应用, 2025, 61(12): 311-318. |
| [9] | 江姝晨, 牛保宁, 高彦. 基于混合语义的切片级智能合约重入漏洞检测[J]. 计算机工程与应用, 2025, 61(1): 321-329. |
| [10] | 张苗, 李绍稳, 吴雨婷, 涂立静, 张磊, 杨尚雄. 实用拜占庭容错共识算法的奖惩机制优化研究[J]. 计算机工程与应用, 2024, 60(7): 266-273. |
| [11] | 李洋, 王静宇, 刘立新. 基于区块链的公平可验证搜索加密方案[J]. 计算机工程与应用, 2024, 60(6): 301-311. |
| [12] | 倪雪莉, 马卓, 王群. 区块链P2P网络及安全研究[J]. 计算机工程与应用, 2024, 60(5): 17-29. |
| [13] | 蔡元海, 宋甫元, 黎凯, 陈彦宇, 付章杰. 高判别精度的区块链交易合法性检测方法[J]. 计算机工程与应用, 2024, 60(5): 271-280. |
| [14] | 朵春红, 匡竹, 齐国梁, 梅华威, 李保罡, 李永倩. 配电网中任务卸载决策与边缘资源分配优化方法[J]. 计算机工程与应用, 2024, 60(5): 281-290. |
| [15] | 曹慧娟, 余庚花, 陈志刚. 协作处理任务的多无人机辅助移动边缘计算[J]. 计算机工程与应用, 2024, 60(4): 298-305. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||