
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 30-44.DOI: 10.3778/j.issn.1002-8331.2503-0281
张天驰,刘强
出版日期:2025-11-01
发布日期:2025-10-31
ZHANG Tianchi, LIU Qiang
Online:2025-11-01
Published:2025-10-31
摘要: 由于复杂水下光学环境影响,水下机器人所获图像普遍存在弱光照引发的对比度衰减、细节模糊及色彩失真等退化现象,严重制约海洋环境的分析。为了深入分析国内外学者在弱光照条件下水下图像处理的研究进展,对近年来相关文献进行了分析总结。分析了水下弱光照条件成因并提出所需处理的主要问题,并根据各类算法的原理特点将水下图像处理方法进行分类;从弱光照条件下水下图像的主要问题切入,详细分析和归纳各类算法的主要特征与不足;通过设计实验在弱光条件下,将传统算法和基于深度学习的水下图像处理方法进行对比分析。最后,总结了一些弱光照条件下水下图像处理领域尚未解决的问题,并对未来研究方向进行了展望。
张天驰, 刘强. 弱光照条件下水下图像处理方法研究进展综述[J]. 计算机工程与应用, 2025, 61(21): 30-44.
ZHANG Tianchi, LIU Qiang. Survey of Underwater Image Processing Methods Under Weak Light Conditions[J]. Computer Engineering and Applications, 2025, 61(21): 30-44.
| [1] 李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J]. 中国科学院院刊, 2022, 37(7): 910-920. LI S, WU Y T, LI C, et al. Application and prospect of unmanned underwater vehicle[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 910-920. [2] 许裕良, 杜江辉, 雷泽宇, 等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人, 2023, 45(1): 110-128. XU Y L, DU J H, LEI Z Y, et al. Review: applications status and key technologies of underwater robots in fishery[J]. Robot, 2023, 45(1): 110-128. [3] 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746-2756. FENG X S, LI Y P, XU H X, et al. Development of deep-sea autonomous underwater vehicle and its application in resource investigation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2746-2756. [4] HU K, WENG C H, ZHANG Y W, et al. An overview of underwater vision enhancement: from traditional methods to recent deep learning[J]. Journal of Marine Science and Engineering, 2022, 10(2): 241. [5] ZHANG S, WANG T, DONG J Y, et al. Underwater image enhancement via extended multi-scale Retinex[J]. Neurocomputing, 2017, 245: 1-9. [6] JAFFE J S. Underwater optical imaging: the past, the present, and the prospects[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3): 683-700. [7] JERLOV N. Marine optics[M]. Amsterdam: Elsevier Scientific Publishing Company, 1976. [8] SCHECHNER Y Y, KARPEL N. Clear underwater vision[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2004. [9] JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. [10] 张天驰, 刘宇轩. 深度学习驱动的水下图像处理研究进展[J]. 计算机科学, 2024, 51(S1): 283-294. ZHANG T C, LIU Y X. Research progress of underwater image processing based on deep learning[J]. Computer Science, 2024, 51(S1): 283-294. [11] HUMMEL R. Image enhancement by histogram transformation[J]. Computer Graphics and Image Processing, 1977, 6(2): 184-195. [12] LIU S B, FAN H J, LIN S, et al. Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 5326-5333. [13] IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method[C]//Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 2010: 1703-1709. [14] GHANI A S, MAT ISA N A. Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification[J]. Computers and Electronics in Agriculture, 2017, 141: 181-195. [15] LI X J, HOU G J, TAN L, et al. A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8: 197448-197462. [16] LI C Y, GUO J C, CONG R M, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677. [17] LAND E H, MCCANN J J. Lightness and Retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. [18] JOSHI K R, KAMATHE R S. Quantification of retinex in enhancement of weather degraded images[C]//Proceedings of the 2008 International Conference on Audio, Language and Image Processing. Piscataway: IEEE, 2008: 1229-1233. [19] FU X Y, ZHUANG P X, HUANG Y, et al. A Retinex-based enhancing approach for single underwater image[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 4572-4576. [20] BIANCO G, MUZZUPAPPA M, BRUNO F, et al. A new color correction method for underwater imaging[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 40: 25-32. [21] MERCADO M A, ISHII K, AHN J. Deep-sea image enhancement using multi-scale retinex with reverse color loss for autonomous underwater vehicles[C]//Proceedings of the OCEANS 2017. Piscataway: IEEE, 2017: 1-6. [22] LI S, LI H, XIN G. Underwater image enhancement algorithm based on improved retinex method[J]. Computer Science and Application, 2018, 8(1): 9-15. [23] TANG C, VON LUKAS U F, VAHL M, et al. Efficient underwater image and video enhancement based on Retinex[J]. Signal, Image and Video Processing, 2019, 13(5): 1011-1018. [24] HU K, ZHANG Y W, LU F Y, et al. An underwater image enhancement algorithm based on MSR parameter optimization[J]. Journal of Marine Science and Engineering, 2020, 8(10): 741. [25] ZHUANG P X, LI C Y, WU J M. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. [26] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 81-88. [27] ANCUTI C, ANCUTI C O, DE VLEESCHOUWER C, et al. Multi-scale underwater descattering[C]//Proceedings of the 2016 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2017: 4202-4207. [28] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379-393. [29] PAN P W, YUAN F, CHENG E. Underwater image de-scattering and enhancing using dehazenet and HWD[J]. Journal of Marine Science and Technology, 2018, 26(4): 6. [30] CHANG H H. Single underwater image restoration based on adaptive transmission fusion[J]. IEEE Access, 2020, 8: 38650-38662. [31] GAO F R, WANG K, YANG Z Y, et al. Underwater image enhancement based on local contrast correction and multi-scale fusion[J]. Journal of Marine Science and Engineering, 2021, 9(2): 225. [32] SONG H J, WANG R. Underwater image enhancement based on multi-scale fusion and global stretching of dual-model[J]. Mathematics, 2021, 9(6): 595. [33] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. [34] NAMER E, SHWARTZ S, SCHECHNER Y Y. Skyless polarimetric calibration and visibility enhancement[J]. Optics Express, 2009, 17(2): 472-493. [35] CHEN Z, WANG H B, SHEN J, et al. Region-specialized underwater image restoration in inhomogeneous optical environments[J]. Optik, 2014, 125(9): 2090-2098. [36] HAN P L, LIU F, YANG K, et al. Active underwater descattering and image recovery[J]. Applied Optics, 2017, 56(23): 6631-6638. [37] SáNCHEZ-FERREIRA C, COELHO L S, AYALA H V H, et al. Bio-inspired optimization algorithms for real underwater image restoration[J]. Signal Processing: Image Communication, 2019, 77: 49-65. [38] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1956-1963. [39] LIU C, MENG W. Removal of water scattering[C]//Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology. Piscataway: IEEE, 2010: 35-39. [40] YANG H Y, CHEN P Y, HUANG C C, et al. Low complexity underwater image enhancement based on dark channel prior[C]//Proceedings of the 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications. Piscataway: IEEE, 2012: 17-20. [41] DREWS P L J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24-35. [42] DREWS P Jr, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2014: 825-830. [43] LI C Y, QUO J, PANG Y W, et al. Single underwater image restoration by blue-green channels dehazing and red channel correction[C]//Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2016: 1731-1735. [44] MENG H Y, YAN Y J, CAI C T, et al. A hybrid algorithm for underwater image restoration based on color correction and image sharpening[J]. Multimedia Systems, 2022, 28(6): 1975-1985. [45] LI C Y, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. [46] WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1382-1386. [47] HOU M J, LIU R S, FAN X, et al. Joint residual learning for underwater image enhancement[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 4043-4047. [48] LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. [49] XU S, ZHANG J, QIN X, et al. Deep Retinex decomposition network for underwater image enhancement[J]. Computers and Electrical Engineering, 2022, 100: 107822. [50] WANG Y D, GUO J C, GAO H, et al. UIEC2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250. [51] YUAN D, CHANG X J, LI Z H, et al. Learning adaptive spatial-temporal context-aware correlation filters for UAV tracking[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2022, 18(3): 1-18. [52] LIU Q, YUAN D, FAN N N, et al. Learning dual-level deep representation for thermal infrared tracking[J]. IEEE Transactions on Multimedia, 2023, 25: 1269-1281. [53] GOODFELLOW I, POUGET A J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680. [54] LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394. [55] FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). New York: ACM, 2018: 7159-7165. [56] GUO Y C, LI H Y, ZHUANG P X. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862-870. [57] YANG H H, HUANG K C, CHEN W T. LAFFNet: a lightweight adaptive feature fusion network for underwater image enhancement[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 685-692. [58] ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. [59] ZONG X H, CHEN Z H, WANG D D. Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment[J]. Applied Intelligence, 2021, 51(4): 1947-1958. [60] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [61] UMMAR M, ALI DHAREJO F, ALAWODE B, et al. Window-based transformer generative adversarial network for autonomous underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107069. [62] WEN J J, CUI J Q, YANG G D, et al. WaterFormer: a global-local transformer for underwater image enhancement with environment adaptor[J]. IEEE Robotics & Automation Magazine, 2024, 31(1): 29-40. [63] TANG Y, IWAGUCHI T, KAWASAKI H, et al. Auto-Enhancer: transformer on U-net architecture search for Underwater image enhancement[C]//Proceedings of the Asian Conference on Computer Vision. Cham: Springer, 2023: 120-137. [64] ALI DHAREJO F, GANAPATHI I I, ZAWISH M, et al. SwinWave?SR: multi?scale lightweight underwater image super-resolution[J]. Information Fusion, 2024, 103: 102127. [65] LI C Y, GUO J C, GUO C L. Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25(3): 323-327. [66] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. [67] CHIANG J Y, CHEN Y C, CHEN Y F. Underwater image enhancement: using wavelength compensation and image dehazing (WCID)[C]//Advanced Concepts for Intelligent Vision Systems. Berlin, Heidelberg: Springer, 2011: 372-383. [68] CHONG C H, ABDUL GHANI A S, MOHD AZMI K Z. Dual image fusion technique for underwater image contrast enhancement[C]//Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019. Singapore: Springer, 2021: 57-72. [69] PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. [70] PENG Y T, ZHAO X Y, COSMAN P C. Single underwater image enhancement using depth estimation based on blurriness[C]//Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 4952-4956. [71] FU X Y, CAO X Y. Underwater image enhancement with global-local networks and compressed-histogram equalization[J]. Signal Processing: Image Communication, 2020, 86: 115892. [72] AKKAYNAK D, TREIBITZ T. A revised underwater image formation model[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6723-6732. [73] LI C Y, GUO J C, CHEN S J, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 1993-1997. [74] PROTASIUK R, BIBI A, GHANEM B. Local color mapping combined with color transfer for underwater image enhancement[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2019: 1433-1439. [75] AKKAYNAK D, TREIBITZ T. Sea-thru: a method for removing water from underwater images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1682-1691. [76] SEKEROGLU B. Time?shift image enhancement method[J]. Image and Vision Computing, 2023, 138: 104810. [77] HUANG D M, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//Proceedings of the 24th International Conference on Multi-Media Modeling. Cham: Springer, 2018: 453-465. [78] YANG M, HU K, DU Y X, et al. Underwater image enhancement based on conditional generative adversarial network[J]. Signal Processing: Image Communication, 2020, 81: 115723. [79] HOU G J, LI N, ZHUANG P X, et al. Non-uniform illumination underwater image restoration via illumination channel sparsity prior[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2): 799-814. [80] AN S M, XU L H, DENG Z C, et al. HFM: a hybrid fusion method for underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107219. [81] 王树林, 杨建民, 卢昌宇, 等. 一种基于双通道的水下图像增强卷积神经网络[J]. 海洋工程, 2023, 41(6): 158-170. WANG S L, YANG J M, LU C Y, et al. An enhanced convolutional neural network for underwater images based on dual channels[J]. The Ocean Engineering, 2023, 41(6): 158-170. [82] WANG N, ZHOU Y B, HAN F L, et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing[J]. arXiv:1912.10269, 2019. [83] CHEN X Y, YU J Z, KONG S H, et al. Towards real-time advancement of underwater visual quality with GAN[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9350-9359. [84] 许袁, 李锋, 闫家祥. 改进的自适应学习注意力网络的水下图像增强[J]. 计算机工程与应用, 2024, 60(24): 243-249. XU Y, LI F, YAN J X. Improved adaptive learning attention network for underwater image enhancement[J]. Computer Engineering and Applications, 2024, 60(24): 243-249. [85] HAN J L, SHOEIBY M, MALTHUS T, et al. Single underwater image restoration by contrastive learning[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2021: 2385-2388. [86] ZHANG S D, REN W Q, TAN X, et al. Semantic-aware dehazing network with adaptive feature fusion[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 454-467. [87] JIANG Z Y, LI Z X, YANG S Z, et al. Target oriented perceptual adversarial fusion network for underwater image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6584-6598. [88] REN S Y, BAO X Q, WANG T J, et al. UIEVUS: an underwater image enhancement method for various underwater scenes[J]. Signal Processing: Image Communication, 2025, 135: 117264. [89] ZHU S D, LUO W L, DUAN S Q. Enhancement of underwater images by CNN-based color balance and dehazing[J]. Electronics, 2022, 11(16): 2537. [90] LIU R S, FAN X, ZHU M, et al. Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861-4875. [91] LIU R S, JIANG Z Y, YANG S Z, et al. Twin adversarial contrastive learning for underwater image enhancement and beyond[J]. IEEE Transactions on Image Processing, 2022, 31: 4922-4936. [92] WANG H, ZHANG W B, BAI L, et al. Metalantis: a comprehensive underwater image enhancement framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618319. [93] JAMADANDI A, MUDENAGUDI U. Exemplar-based underwater image enhancement augmented by wavelet corrected transforms[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019 : 11-17. [94] 常戬, 陈洪福, 王冰冰. Transformer与CNN并行引导的水下图像增强[J]. 计算机工程与应用, 2024, 60(4): 280-288. CHANG J, CHEN H F, WANG B B. Underwater image enhancement based on parallel guidance of transformer and CNN[J]. Computer Engineering and Applications, 2024, 60(4): 280-288. [95] UPLAVIKAR P M, WU Z, WANG Z. All-in-one underwater image enhancement using domain-adversarial learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 1-8. [96] ISLAM J M, LUO P G, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception[J]. arXiv:2002.01155, 2020. [97] MA Z Y, OH C. A wavelet-based dual-stream network for underwater image enhancement[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2769-2773. [98] LYU Z K, PENG A, WANG Q W, et al. An efficient learning-based method for underwater image enhancement[J]. Displays, 2022, 74: 102174. [99] ZHAI G T, MIN X K. Perceptual image quality assessment: a survey[J]. Science China Information Sciences, 2020, 63(11) : 1-52. [100] TANG S Q, LI C L, TIAN Q. Underwater image quality assessment based on human visual system[C]//Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2020: 378-382. [101] GUOJ, LI C, ZHANG Y, et al. Quality assessment method for underwater images[J]. Journal of Image and Graphics, 2017, 22(1): 1-8. [102] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [103] YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. [104] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551. [105] CHEN T H, YANG X C, LI N X, et al. Underwater image quality assessment method based on color space multi-feature fusion[J]. Scientific Reports, 2023, 13: 16838. [106] SAAD SAOUD L, ELMEZAIN M, SULTAN A, et al. Seeing through the haze: a comprehensive review of underwater image enhancement techniques[J]. IEEE Access, 2024, 12: 145206-145233. |
| [1] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [2] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [3] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [4] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [5] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [6] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [7] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [8] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||