[1] 中华人民共和国最高人民法院. 中国判决文书网[EB/OL]. [2023-07-14]. https://wenshu.court.gov.cn/.
[2] 中华人民共和国最高人民法院. 中国庭审公开网[EB/OL]. [2023-07-14]. http://tingshen.court.gov.cn/.
[3] COOLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537.
[4] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv:1508.01991, 2015.
[5] YAN H, DENG B, LI X, et al. TENER: adapting transformer encoder for named entity recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[6] ZHU Y, WANG G, KARLSSON B F. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 3384-3393.
[7] 王得贤, 王素格, 裴文生, 等. 基于JCWA-DLSTM的法律文书命名实体识别方法[J]. 中文信息学报, 2020, 34(10): 51-58.
WANG D X, WANG S G, PEI W S, et al. Named entity recognition based on JCWA-DLSTM for legal instruments[J]. Journal of Chinese Information Processing, 2020, 34(10): 51-58.
[8] 郭知鑫, 邓小龙. 基于BERT-BiLSTM-CRF的法律案件实体智能识别方法[J]. 北京邮电大学学报, 2021, 44(4): 129-134.
GUO Z X, DENG X L. Intelligent identification method of legal case entity based on BERT-BiLSTM-CRF[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 129-134.
[9] 曾兰兰, 王以松, 陈攀峰. 基于BERT和联合学习的裁判文书命名实体识别[J]. 计算机应用, 2022, 42(10): 3011-3017.
ZENG L L, WANG Y S, CHEN P F. Named entity recognition based on BERT and joint learning for judgment documents[J]. Journal of Computer Applications, 2022, 42(10): 3011-3017.
[10] 郭力华, 李旸, 王素格, 等. 基于匹配策略和社区注意力机制的法律文书命名实体识别[J]. 中文信息学报, 2022, 36(2): 85-92.
GUO L H, LI Y, WANG S G, et al. Name entity recognition in legal instruments based on matching strategy and community attention mechanism[J]. Journal of Chinese Information Processing, 2022, 36(2): 85-92.
[11] RADFORD A, METZ L, CHINTATL S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015.
[12] XIE Q, LUONG M, HOVY E, et al. Self-training with noisy student improves image net classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10687-10698.
[13] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by back propagation[C]//Proceedings of the International Conference on Machine Learning, 2015: 1180-1189.
[14] VEIT A, ANDREAS N, CHECHIK G, et al. Learning from noisy large-scale datasets with minimal supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 6575-6583.
[15] XIAO C, ZHONG H, GUO Z, et al. CAIL2018: a large-scale legal dataset for judgment prediction[J]. arXiv:1807.02478, 2018.
[16] DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[17] YUE Z, YILE W, JIE Y. Lattice LSTM for Chinese sentence representation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1506-1519.
[18] LU J, LIU W. Automatic information extraction for financial events by integrating BiGRU and attention mechanism[J]. Journal of Physics: Conference Series, 2022, 2171(1): 12001.
[19] LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6836-6842.
[20] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1554-1564.
[21] LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1167-1176.
[22] GU Y, QU X, ZHANG Y, et al. Delving deep into regularity: a simple but effective method for Chinese named entity recognition[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2022: 1863-1873. |