[1] 赵宏伟, 郑嘉俊, 赵鑫欣, 等. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293.
ZHAO H W, ZHENG J J, ZHAO X X, et al. Rail surface defect method based on bimodal-modal deep learning[J]. Computer Engineering and Applications, 2023, 59(7): 285-293.
[2] 杨泽青, 张明轩, 陈英姝, 等. 基于机器视觉的表面缺陷检测方法研究进展[J]. 现代制造工程, 2023(4): 143-156.
YANG Z Q, ZHANG M X, CHEN Y S, et al. Review of surface defect detection methods based on machine vision[J]. Modern Manufacturing Engineering, 2023(4): 143-156.
[3] ZHANG A Z, HU X Y, JIN M Y, et al. Multi-target defect detection of railway track based on image processing[C]//Proceedings of the 2020 Chinese Control and Decision Conference. Piscataway: IEEE, 2020: 3377-3382.
[4] 罗晖, 徐广隆. 基于图像增强与深度学习的钢轨表面缺陷检测[J]. 铁道科学与工程学报, 2021, 18(3): 623-629.
LUO H, XU G L. Rail surface defect detection based on image enhancement and deep learning[J]. Journal of Railway Science and Engineering, 2021, 18(3): 623-629.
[5] 岳彪, 闵永智, 马宏锋, 等. 钢轨表面缺陷检测系统中图像增强预处理方法研究[J]. 铁道科学与工程学报, 2018, 15(12): 3248-3256.
YUE B, MIN Y Z, MA H F, et al. Research on image enhancement preprocessing method in rail surface defects detection system[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3248-3256.
[6] 杨超. 时频域结合的数字图像增强技术的研究[D]. 唐山: 华北理工大学, 2019.
YANG C. Research on digital image enhancement technology based on spatial and frequency domain[D]. Tangshan: North China University of Science and Technology, 2019.
[7] LI J I, LUO P, HE S X, et al. Application of FTP in rail profile and surface flaw detection based on orthogonal two-frequency composite grating[C]//Proceedings of the 2017 Far East NDT New Technology & Application Forum. Piscataway: IEEE, 2017: 318-322.
[8] 王正家, 昝傲, 谷峰. 基于Gabor滤波的软包电池表面缺陷检测[J]. 组合机床与自动化加工技术, 2023(11): 146-149.
WANG Z J, ZAN A, GU F. Surface defect detection of pouch cells based on Gabor filtering[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(11): 146-149.
[9] 杜少聪, 张红钢, 王小敏. 基于改进YOLOv5的钢轨表面缺陷检测[J]. 北京交通大学学报, 2023, 47(2): 129-136.
DU S C, ZHANG H G, WANG X M. Rail surface defect detection based on improved YOLOv5[J]. Journal of Beijing Jiaotong University, 2023, 47(2): 129-136.
[10] 刘俊博, 杜馨瑜, 王胜春, 等. 基于少样本学习的钢轨表面缺陷检测方法[J]. 铁道学报, 2022, 44(7): 72-79.
LIU J B, DU X Y, WANG S C, et al. Rail surface defect detection method based on few-shot learning[J]. Journal of the China Railway Society, 2022, 44(7): 72-79.
[11] ANWAR N, SHEN Z, WEI Q L, et al. YOLOv4 based deep learning algorithm for defects detection and classification of rail surfaces[C]//Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE, 2021: 1616-1620.
[12] 邢艳, 陈晓璐, 徐启奥, 等. 融合空间域和频率域信息的图像去模糊[J]. 计算机系统应用, 2024, 33(2): 1-12.
XING Y, CHEN X L, XU Q A, et al. Image deblurring by fusing information of spatial and frequency domains[J]. Computer Systems and Applications, 2024, 33(2): 1-12.
[13] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14816-14826.
[14] 李超超, 张远东, 王昌龙. 圆形植物识别定位的HSV模型研究[J]. 计算机工程与应用, 2020, 56(6): 220-223.
LI C C, ZHANG Y D, WANG C L. Research on HSV model for identifying and locating round plants[J]. Computer Engineering and Applications, 2020, 56(6): 220-223.
[15] 张弢, 蒋东东, 田喆文, 等. 基于ACE与YOLOv5的电力遥感图像检测算法[J]. 计算机仿真, 2024, 41(1): 277-283.
ZHANG T, JIANG D D, TIAN Z W, et al. Electric power remote sensing image detection algorithm based on automatic color balance and YOLOv5[J]. Computer Simulation, 2024, 41(1): 277-283.
[16] REDDY G R, SRINIVAS A, GIRIJA S P, et al. Enhancement of images using optimized gamma correction with weighted distribution via differential evolution algorithm[C]//Proceedings of the 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies. Piscataway: IEEE, 2022: 1-5.
[17] HUANG L H, CAO G, YU L F. Efficient contrast enhancement with truncated adaptive gamma correction[C]//Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2016: 189-194.
[18] SAHNOUN M, KALLEL F, DAMMAK M, et al. A comparative study of MRI contrast enhancement techniques based on traditional gamma correction and adaptive gamma correction: case of multiple sclerosis pathology[C]//Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing. Piscataway: IEEE, 2018: 1-7.
[19] 王大红, 胡茂林. 巴特沃斯非线性混合滤波器图像滤波方法设计[J]. 计算机工程与应用, 2010, 46(21): 195-198.
WANG D H, HU M L. Image processing method using mixed non-linear Butterworth filter[J]. Computer Engineering and Applications, 2010, 46(21): 195-198.
[20] BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540.
[21] XIAO J S, ZHAO T, YAO Y T, et al. Context augmentation and feature refinement network for tiny object detection [C]//Proceedings of the 10th International Conference on Learning Representations, 2022.
[22] XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4784-4793.
[23] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[24] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[25] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 586-595.
[26] 史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J]. 计算机工程与应用, 2024, 60(9): 79-89.
SHI T, CUI J, LI S. Algorithm for real-time vehicle detection from UAVs based on optimizing and improving YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 79-89.
[27] MITTAL A, MOORTHY A K, BOVIK A C. Blind/referenceless image spatial quality evaluator[C]//Proceedings of the 2011 Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE, 2011: 723-727.
[28] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
[29] ROZUMNYI D, OSWALD M R, FERRARI V, et al. DeFMO: deblurring and shape recovery of fast moving objects[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3455-3464.
[30] TAO X, GAO H Y, SHEN X Y, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8174-8182.
[31] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 257-265.
[32] ZHANG J M, LV Y R, TAO J J, et al. A robust real-time anchor-free traffic sign detector with one-level feature[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1437-1451.
[33] YANG W H, YUAN Y, REN W Q, et al. Advancing image understanding in poor visibility environments: a collective benchmark study[J]. IEEE Transactions on Image Processing, 2020, 29: 5737-5752.
[34] BAO Y Q, SONG K C, LIU J, et al. Triplet-graph reasoning network for few-shot metal generic surface defect segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
[35] ABDULLAH-AL-WADUD M, KABIR M H, DEWAN M A A, et al. A dynamic histogram equalization for image contrast enhancement[C]//Proceedings of the 2007 Digest of Technical Papers International Conference on Consumer Electronics. Piscataway: IEEE, 2007: 1-2.
[36] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384.
[37] CELIK T, TJAHJADI T. Contextual and variational contrast enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3431-3441.
[38] YING Z Q, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[J]. arXiv:1711.00591, 2017.
[39] LIU R S, MA L, ZHANG J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565.
[40] CAI Y H, BIAN H, LIN J, et al. Retinexformer: one-stage retinex-based transformer for low-light image enhancement[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12470-12479.
[41] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[42] HUANG H J, CHEN Z G, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784. |