计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 348-358.DOI: 10.3778/j.issn.1002-8331.2405-0236

• 工程与应用 • 上一篇    下一篇

结合空间域与频率域处理的钢轨表面缺陷检测研究

冀萌浩,王新   

  1. 河南理工大学 物理与电子信息学院,河南 焦作 454000
  • 出版日期:2025-10-01 发布日期:2025-09-30

Research on Detection of Rail Surface Defects by Combining Spatial Domain and Frequency Domain Processing Techniques

JI Menghao, WANG Xin   

  1. College of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 针对钢轨表面缺陷检测任务存在因相机抖动造成的图像模糊失真而影响检测效果的问题,提出了一种结合空间域与频率域处理的图像增强算法与改进后YOLOv8s模型的钢轨表面缺陷检测算法,旨在通过提高图像质量来提高检测网络的检测精度。通过图像恢复网络对图像去模糊复原,使用深度学习缩减检测区域,提出了空间域的全局与局部信息融合的自适应伽马变换和基于拉普拉斯金字塔改进的频率域滤波算法来提升图像亮度、对比度和细节信息。借助YOLOv8s算法对增强后的图像进行训练,并通过改进特征融合网络、引入注意力模块和设计基于参数共享的检测头来降低网络参数,提升网络检测精度。实验结果表明,相比于未使用图像增强算法,该算法增强后数据集的检测精度有了更好的效果;采用增强后的数据集进行训练,相比于原网络,改进后的检测网络对所有目标、大目标和小目标的平均精度均值都有明显提升。

关键词: 钢轨表面缺陷, 自适应伽马变换, 频率域滤波, YOLOv8s, 参数共享

Abstract: Aiming at the problem of image blur and distortion caused by camera shake, which affects the detection performance in the task of rail surface defect detection, this paper proposes an image enhancement algorithm that combines spatial domain and frequency domain processing. Additionally, an improved YOLOv8s model is presented for rail surface defect detection. The purpose is to enhance image quality to improve the detection accuracy of the detection network. The images are deblurred and restored using image restoration network, with deep learning utilized to reduce the detection region. An adaptive gamma transformation, which integrates global and local spatial information, along with a frequency domain filtering algorithm improved via Laplacian pyramids, is proposed to enhance image brightness, contrast, and detail information. Furthermore, the enhanced images are trained using the YOLOv8s algorithm, with enhancements in the feature fusion network, the integration of attention modules, and the design of a detection head based on parameter sharing to reduce network parameters and increase detection precision. Experimental results demonstrate that compared to datasets not using the image enhancement algorithm, the enhanced dataset achieves better detection accuracy; when trained on the enhanced dataset, the improved detection network shows a significant improvement in mean average precision across all targets, large targets, and small targets.

Key words: rail surface defects, adaptive gamma transformation, frequency domain filtering, YOLOv8s, parameter sharing