[1] LEONG S C, TANG Y M, LAI C H, et al. Facial expression and body gesture emotion recognition: a systematic review on the use of visual data in affective computing[J]. Computer Science Review, 2023, 48: 100545.
[2] 缪裕青, 董晗, 张万桢, 等. 一种多任务学习的跨模态视频情感分析方法[J]. 计算机工程与应用, 2023, 59(12): 141-147.
MIAO Y Q, DONG H, ZHANG W Z, et al. Cross-modal video emotion analysis method based on multi-task learning[J]. Computer Engineering and Applications, 2023, 59(12): 141-147.
[3] ZHAO R, LIU T S, HUANG Z X, et al. Spatial-temporal graphs plus transformers for geometry-guided facial expression recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 2751-2767.
[4] BARROS P, SCIUTTI A. Across the universe: biasing facial representations toward non-universal emotions with the face-STN[J]. IEEE Access, 2022, 10: 103932-103947.
[5] GUO Y F, HUANG J, XIONG M F, et al. Facial expressions recognition with multi-region divided attention networks for smart education cloud applications[J]. Neurocomputing, 2022, 493: 119-128.
[6] WANG S M, SHUAI H, LIU C G, et al. Bias-based soft label learning for facial expression recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 3257-3268.
[7] 张华忠, 潘曰凯, 涂晓光, 等. 融合三维人脸动态信息和光流信息的人脸表情识别[J]. 计算机科学, 2024, 51(S1): 594-600.
ZHANG H Z, PAN Y K, TU X G, et al. Facial expression recognition integrating 3D facial dynamic information and optical flow information[J]. Computer Science, 2024, 51(S1):594-600.
[8] 姚鸿勋, 邓伟洪, 刘洪海, 等. 情感计算与理解研究发展概述[J]. 中国图象图形学报, 2022, 27(6): 2008-2035.
YAO H X, DENG W H, LIU H H, et al. An overview of research development of affective computing and understanding[J]. Journal of Image and Graphics, 2022, 27(6): 2008-2035.
[9] SUN N, SONG Y, LIU J X, et al. Appearance and geometry transformer for facial expression recognition in the wild[J]. Computers and Electrical Engineering, 2023, 107: 108583.
[10] LENZONI S, BOZZONI V, BURGIO F, et al. Recognition of emotions conveyed by facial expression and body postures in myotonic dystrophy (DM)[J]. Cortex, 2020, 127: 58-66.
[11] BLYTHE E, GARRIDO L, LONGO M R. Emotion is perceived accurately from isolated body parts, especially hands[J]. Cognition, 2023, 230: 105260.
[12] MAHFOUDI M A, MEYER A, GAUDIN T, et al. Emotion expression in human body posture and movement: a survey on intelligible motion factors, quantification and validation[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 2697-2721.
[13] NOROOZI F, CORNEANU C A, KAMI?SKA D, et al. Survey on emotional body gesture recognition[J]. IEEE Transactions on Affective Computing, 2021, 12(2): 505-523.
[14] GUNES H, PICCARDI M. A bimodal face and body gesture database for automatic analysis of human nonverbal affective behavior[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: IEEE, 2006: 1148-1153.
[15] WEI J, HU G Y, YANG X Y, et al. Learning facial expression and body gesture visual information for video emotion recognition[J]. Expert Systems with Applications, 2024, 237: 121419.
[16] KOSTI R, ALVAREZ J M, RECASENS A, et al. Context based emotion recognition using EMOTIC dataset[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(11): 2755-2766.
[17] WANG S M, SHUAI H, ZHU L, et al. Expression complementary disentanglement network for facial expression recognition[J]. Chinese Journal of Electronics, 2024, 33(3): 742-752.
[18] LI W X, DONG X, WANG Y H. Human emotion recognition with relational region-level analysis[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 650-663.
[19] WU S C, ZHOU L, HU Z X, et al. Hierarchical context-based emotion recognition with scene graphs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3725-3739.
[20] QI H X, HAN Z F. Emotion recognition and management in the tourism industry during emergency events using improved convolutional neural network[J]. IEEE Access, 2024, 12: 32660-32667.
[21] PALASH M, BHARGAVA B. EMERSK-explainable multimodal emotion recognition with situational knowledge[J]. IEEE Transactions on Multimedia, 2023, 26: 2785-2794.
[22] ZAGHBANI S, BOUHLEL M S. Multi-task CNN for multi-cue affects recognition using upper-body gestures and facial expressions[J]. International Journal of Information Technology, 2022, 14(1): 531-538.
[23] THUSEETHAN S, RAJASEGARAR S, YEARWOOD J. EmoSeC: emotion recognition from scene context[J]. Neurocomputing, 2022, 492: 174-187.
[24] WANG Z L, LAO L J, ZHANG X Y, et al. Context-dependent emotion recognition[J]. Journal of Visual Communication and Image Representation, 2022, 89: 103679.
[25] GAO Q Q, ZENG H X, LI G, et al. Graph reasoning-based emotion recognition network[J]. IEEE Access, 2021, 9: 6488-6497.
[26] ZHOU S W, WU X M, JIANG F, et al. Emotion recognition from large-scale video clips with cross-attention and hybrid feature weighting neural networks[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1400.
[27] LE N, NGUYEN K, NGUYEN A, et al. Global-local attention for emotion recognition[J]. Neural Computing and Applications, 2022, 34(24): 21625-21639.
[28] 郭靖圆, 董乙杉, 刘晓文, 等. 注意力机制与Involution算子改进的人脸表情识别[J]. 计算机工程与应用, 2023, 59(23): 95-103.
GUO J Y, DONG Y S, LIU X W, et al. Facial expression recognition based on attention mechanism and involution[J]. Computer Engineering and Applications, 2023, 59(23): 95-103.
[29] 胡敏, 胡鹏远, 葛鹏, 等. 基于面部运动单元和时序注意力的视频表情识别方法[J]. 计算机辅助设计与图形学学报, 2023, 35(1): 108-117.
HU M, HU P Y, GE P, et al. Video expression recognition method based on facial motion unit and temporal attention[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(1): 108-117.
[30] BARROS P, WERMTER S. Developing crossmodal expression recognition based on a deep neural model[J]. Adaptive Behavior, 2016, 24(5): 373-396.
[31] CHEN L F, LI M, WU M, et al. Coupled multimodal emotional feature analysis based on broad-deep fusion networks in human-robot interaction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9663-9673.
[32] LI M, CHEN L F, WU M, et al. Broad-deep network-based fuzzy emotional inference model with personal information for intention understanding in human-robot interaction[J]. Annual Reviews in Control, 2024, 57: 100951.
[33] NGUYEN D, NGUYEN K, SRIDHARAN S, et al. Deep spatio?temporal feature fusion with compact bilinear pooling for multimodal emotion recognition[J]. Computer Vision and Image Understanding, 2018, 174: 33-42.
[34] ILYAS C, NUNES R, NASROLLAHI K, et al. Deep emotion recognition through upper body movements and facial expression[C]//Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS-Science and Technology Publications, 2021: 669-679.
[35] LIN B J, LIN Y T, LIU C C, et al. Mental status detection for schizophrenia patients via deep visual perception[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5704-5715.
[36] 陈彩华. 基于语音、表情与姿态的三模态普通话情感识别[J]. 控制工程, 2020, 27(11): 2023-2029.
CHEN C H. Tri-modal mandarin emotion recognition based on speech, facial expression and body gesture[J]. Control Engineering of China, 2020, 27(11): 2023-2029.
[37] VERMA B, CHOUDHARY A. Affective state recognition from hand gestures and facial expressions using Grassmann manifolds[J]. Multimedia Tools and Applications, 2021, 80(9): 14019-14040.
[38] ZHANG Z C, WANG L J, YANG J F. Weakly supervised video emotion detection and prediction via cross-modal temporal erasing network[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18888-18897.
[39] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929v2, 2020.
[40] SHI L, ZHANG Y, CHENG J, et al. Decoupled spatial-temporal attention network for skeleton-based action recognition[J]. arXiv:2007.03263, 2020.
[41] YUN W L, QI M S, WANG C M, et al. Weakly-supervised temporal action localization by inferring salient snippet-feature[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 6908-6916.
[42] LEE J, KIM S Y, KIM S, et al. Context-aware emotion recognition networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 10142-10151.
[43] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |