[1] MENG X Y, WEN J, LI Y, et al. DFNet-Trans: an end-to-end multibranching network for depth estimation for transparent objects[J]. Computer Vision and Image Understanding, 2024, 240: 103914.
[2] 李安达, 吴瑞明, 李旭东. 改进YOLOv7的小目标检测算法研究[J]. 计算机工程与应用, 2024, 60(1): 122-134.
LI A D, WU R M, LI X D. Research on improving YOLOv7’s small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 122-134.
[3] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001: 511-518.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005 : 886-893.
[5] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157.
[6] YU H, KIM S. SVM tutorial: classification, regression, and ranking[M]. Cham: Springer , 2012.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[8] LAI P J, FUH C S. Transparent object detection using regions with convolutional neural network[C]//Proceedings of the 1st International Conference on Big Data Analysis and Deep Learning, 2019: 86-93.
[9] KHAING M P, MASAYUKI M. Transparent object detection using convolutional neural network[C]//Proceedings of the Big Data Analysis and Deep Learning Applications, 2019: 86-93.
[10] XIE E Z, WANG W J, WANG W H, et al. Segmenting transparent objects in the wild[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 696-711.
[11] HE H, LI X T, CHENG G L, et al. Enhanced boundary learning for glass-like object segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15839-15848.
[12] XIE E, WANG W, WANG W, et al. Segmenting transparent object in the wild with transformer[J]. arXiv:2101.08461, 2021.
[13] ZHANG J M, YANG K L, CONSTANTINESCU A, et al. Trans4Trans: efficient transformer for transparent object segmentation to help visually impaired people navigate in the real world[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1760-1770.
[14] 张涛, 谢探阳, 李玉梅, 等. 基于改进YOLOv4算法的玻璃杯缺陷识别方法研究[J]. 电子测量技术, 2024, 46(2): 46-51.
ZHANG T, XIE T Y, LI Y M, et al. Research on glass defect recognition method based on improved YOLOv4[J]. Electronic Measurement Technology, 2024, 46(2): 46-51.
[15] ALI M, JAVAID M, NOMAN M, et al. COSNet: a novel semantic segmentation network using enhanced boundaries in cluttered scenes[J]. arXiv:2410.24139, 2024.
[16] SAJJAN S, MOORE M, PAN M K, et al. Clear grasp: 3D shape estimation of transparent objects for manipulation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 3634-3642.
[17] SUN T Y, ZHANG G D, YANG W M, et al. TROSD: a new RGB-D dataset for transparent and reflective object segmentation in practice[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5721-5733.
[18] KALRA A, TAAMAZYAN V, RAO S K, et al. Deep polarization cues for transparent object segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8599-8608.
[19] YU R N, REN W Y, ZHAO M, et al. Transparent objects segmentation based on polarization imaging and deep learning[J]. Optics Communications, 2024, 555: 130246.
[20] HUO D, WANG J, QIAN Y M, et al. Glass segmentation with RGB-thermal image pairs[J]. IEEE Transactions on Image Processing, 2023, 32: 1911-1926.
[21] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[22] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755.
[23] LIU C. Sebica: lightweight spatial and efficient bidirectional channel attention super resolution network[J]. arXiv:2410. 20546, 2024.
[24] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 699-703.
[25] XU H P, WANG Y R, EPPEL S, et al. Seeing glass: joint point cloud and depth completion for transparent objects[C]//Proceedings of the 5th Conference on Robot Learning, 2021: 827-838.
[26] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[27] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[28] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[29] ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212.
[30] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want toLearn using programmable gradient information[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2025: 1-21.
[31] WANG, A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[32] ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[33] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |