计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 278-287.DOI: 10.3778/j.issn.1002-8331.2404-0337

• 图形图像处理 • 上一篇    下一篇

融入多尺度区域注意力的小样本遥感场景分类

周立俭,赵志昂,孟庆宇,王梦圆,郝思媛,赵锟   

  1. 1.青岛理工大学 信息与控制工程学院,山东 青岛 266520
    2.北京交通大学 软件学院,北京 100044
  • 出版日期:2025-08-01 发布日期:2025-07-31

Few-Shot Scene Classification with Multi-Scale Patch Attention Mechanism in Remote Sensing

ZHOU Lijian, ZHAO Zhi’ang, MENG Qingyu, WANG Mengyuan, HAO Siyuan, ZHAO Kun   

  1. 1.School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China
    2.School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 针对基于小样本的研究方法大都关注图像深层特征的提取、对于浅层信息的挖掘不充分,且忽视了遥感图像区域特征重要性的问题,提出一种融入多尺度区域注意力的小样本遥感场景分类方法。为了提取遥感场景包含细粒度及粗粒度信息的多尺度特征,提出了基于ResNet-12的多尺度特征提取模块。由于在样本少的情况下,区域特征在场景分类中起着关键作用,为强调区域特征的重要性,提出区域注意力(patch attention,PAT)机制,构建基于PAT的特征增强模块。为充分利用多尺度特征信息,提出特征融合和分类模块,将来自不同尺度的增强特征进行融合,再通过计算样本间的余弦相似度完成分类任务。实验结果表明,提出的方法能够有效地提升分类准确率和对于新类别的识别能力。

关键词: 小样本学习, 遥感场景分类, 多尺度, 区域注意力

Abstract: In view of the problem that most research methods based on few-shot focus on the extraction of deep features of images, insufficient mining of shallow information, and ignore the importance of regional features in remote sensing images, a few-shot scene classification with multi-scale patch attention mechanism in remote sensing is proposed. In order to extract multi-scale features containing fine-grained and coarse-grained information in remote sensing scenes, a multi-scale feature extraction module based on ResNet-12 is proposed. Since regional features play a key role in scene classifi-cation when there are few samples, in order to emphasize the importance of regional features, a patch attention (PAT) mechanism is proposed to construct a feature enhancement module based on PAT. Finally, to make full use of multi-scale feature information, a feature fusion and classification module is proposed to fuse enhanced features from different scales, and then complete the classification task by calculating the cosine similarity between samples. Experimental results show that the proposed method can effectively improve the classification accuracy and the recognition ability for new categories.

Key words: few-shot learning, remote sensing scene classification, muti-scale, patch attention