[1] YAO X W, FENG X X, HAN J W, et al. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 675-685.
[2] CHEN F H, TSOU J Y. Assessing the effects of convolutional neural network architectural factors on model performance for remote sensing image classification: an in-depth investigation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102865.
[3] PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? [C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2015: 44-51.
[4] ZHANG Y, ZHENG X T, LU X Q. Pairwise comparison network for remote-sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6505105.
[5] WANG Q, HUANG W, XIONG Z T, et al. Looking closer at the scene: multiscale representation learning for remote sensing image scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1414-1428.
[6] LI L J, HAN J W, YAO X W, et al. DLA-MatchNet for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7844-7853.
[7] CHEN Y Q, LI Y Y, MAO H T, et al. A novel deep nearest neighbor neural network for few-shot remote sensing image scene classification[J]. Remote Sensing, 2023, 15(3): 666.
[8] 张多纳, 赵宏佳, 鲁远耀, 等. 融入注意力机制的小样本遥感图像场景分类[J]. 计算机工程与应用, 2024, 60(4): 173-182.
ZHANG D N, ZHAO H J, LU Y Y, et al. Few-shot scene classification with attention mechanism in remote sensing[J]. Computer Engineering and Applications, 2024, 60(4): 173-182.
[9] WANG J Y, WANG X Q, XING L, et al. Class-shared SparsePCA for few-shot remote sensing scene classification[J]. Remote Sensing, 2022, 14(10): 2304.
[10] YUAN Z W, TANG C, YANG A X, et al. Few-shot remote sensing image scene classification based on metric learning and local descriptors[J]. Remote Sensing, 2023, 15(3): 831.
[11] HUANG W D, YUAN Z W, YANG A X, et al. TAE-net: task-adaptive embedding network for few-shot remote sensing scene classification[J]. Remote Sensing, 2022, 14(1): 111.
[12] 陈杰虎, 汪西莉. 多图卷积网络的遥感图像小样本分类[J]. 遥感学报, 2022, 26(10): 2029-2042.
CHEN J H, WANG X L. Multi-graph convolutional network for a remote sensing image few shot classification[J]. National Remote Sensing Bulletin, 2022, 26(10): 2029-2042.
[13] ZHANG B Q, FENG S S, LI X T, et al. SGMNet: scene graph matching network for few-shot remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5628915.
[14] QIAO X J, XING L, HAN A X, et al. Simplified multi-head mechanism for few-shot remote sensing image classification[J]. Neural Processing Letters, 2024, 56(1): 2.
[15] MA Y T, MENG J M, LIU B D, et al. Dictionary learning for few-shot remote sensing scene classification[J]. Remote Sensing, 2023, 15(3): 773.
[16] DONG Z, LIN B J, XIE F. Optimizing few-shot remote sensing scene classification based on an improved data augmentation approach[J]. Remote Sensing, 2024, 16(3): 525.
[17] WANG Y K, XU C M, LIU C, et al. Instance credibility inference for few-shot learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12833-12842.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[20] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.
[21] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 270-279.
[22] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803.
[23] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135.
[24] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems, 2017.
[25] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems, 2016.
[26] CHENG G, CAI L M, LANG C B, et al. SPNet: siamese-prototype network for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5608011.
[27] WANG B, WANG Z R, SUN X, et al. TDNet: a novel transductive learning framework with conditional metric embedding for few-shot remote sensing image scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4591-4606.
[28] CHEN X L, ZHU G B, LIU M Q, et al. Few-shot remote sensing image scene classification based on multiscale covariance metric network (MCMNet)[J]. Neural Networks, 2023, 163: 132-145. |