计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 286-296.DOI: 10.3778/j.issn.1002-8331.2404-0217

• 图形图像处理 • 上一篇    下一篇

医学图像分割中的双分支特征提取器及高效特征融合方法

张凡,侯惠芳,张自豪,潘泉   

  1. 1.河南工业大学 信息科学与工程学院,郑州 450000
    2.河南工业大学 人工智能与大数据学院,郑州 450000
    3.西北工业大学 自动化学院,西安 710000
  • 出版日期:2025-07-15 发布日期:2025-07-15

Dual Branch Feature Extractor and Efficient Feature Fusion Method in Medical Image Segmentation

ZHANG Fan, HOU Huifang, ZHANG Zihao, PAN Quan   

  1. 1.School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450000, China
    2.School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450000, China
    3.School of Automation, Northwestern Polytechnical University, Xi’an 710000, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 在医学图像分割领域,卷积网络和Transformer网络均以其独特优势而备受青睐,但各自的应用也面临着特定的局限性。此外,现有的特征融合模块存在显著的信息损失,无法充分学习和利用空间和通道之间的复杂关系来实现更准确的分割。为此,提出了一种双分支并行网络特征提取器,解决了单个网络在信息提取方面的不足,有效地克服了两个网络串联组合时可能出现的信息瓶颈问题。同时,为了更充分地利用空间和通道之间的复杂关系,进一步引入了多分支局部全局特征融合增强模块,它能够高效地融合双分支的特征。实验表明,该算法在Synapse和ACDC数据集上表现出色,平均Dice分别达到83.32%和91.82%,HD95指标分别达到15.80 mm和1.29 mm,具有较强的竞争力。

关键词: 医学图像分割, 卷积神经网络(CNN), Transformer网络, 特征融合

Abstract: In medical image segmentation, convolutional and Transformer networks are highly favored for their unique advantages, but their respective applications also face specific limitations. In addition, existing feature fusion modules suffer from significant information loss and cannot fully learn and utilize the complex relationships between space and channels to achieve more accurate segmentation. To this end, a dual branch parallel network feature extractor is first proposed, which solves the shortcomings of a single network in information extraction and effectively overcomes the information bottleneck problem that may occur when two networks are combined in series. Meanwhile, to fully utilize the complex relationship between space and channels, this paper further introduces a multi-branch local global feature fusion enhancement module, which can efficiently fuse features from both branches. The experiments show that the algorithm performs well on the Synapse and ACDC datasets, with an average Dice of 83.32% and 91.82%, and an HD95 index of 15.80 mm and 1.29 mm, respectively, demonstrating strong competitiveness.

Key words: medical image segmentation, convolutional neural network (CNN), Transformer networks, feature fusion