[1] HESAMIAN M H, JIA W J, HE X J, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4): 582-596.
[2] FU Y B, LEI Y, WANG T H, et al. A review of deep learning based methods for medical image multi-organ segmentation[J]. Physica Medica, 2021, 85: 107-122.
[3] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[4] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49.
CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49.
[5] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
[6] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[8] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[9] CAO H, WANG Y, CHEN J, et al. Swin-UNet: UNet-like pure transformer for medical image segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218.
[10] WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 109-119.
[11] HUANG X H, DENG Z F, LI D D, et al. MissFormer: an effective medical image segmentation transformer[J]. arXiv: 2109. 07162, 2021.
[12] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[13] CHEN B Z, LIU Y S, ZHANG Z, et al. TransAttUnet: multi-level attention-guided U-Net with transformer for medical image segmentation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 55-68.
[14] HEIDARI M, KAZEROUNI A, SOLTANY M, et al. HiFormer: hierarchical multi-scale representations using transformers for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6191-6201.
[15] AZAD R, JIA Y W, AGHDAM E K, et al. Enhancing medical image segmentation with TransCeption: a multi-scale feature fusion approach[J]. arXiv:2301.10847, 2023.
[16] FENG S L, ZHAO H M, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018.
[17] XU Y, ZHOU Z, LI X, et al. FFU-Net: feature fusion U-Net for lesion segmentation of diabetic retinopathy[J]. BioMed Research International, 2021, 2021: 6644071.
[18] SUN Y H, DAI D W, ZHANG Q N, et al. MSCA-Net: multi-scale contextual attention network for skin lesion segmentation[J]. Pattern Recognition, 2023, 139: 109524.
[19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
[20] ZHOU Z, SIDDIQUEE R M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11.
[21] HUANG H M, LIN L F, TONG R F, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059.
[22] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018.
[23] SINHA A, DOLZ J. Multi-scale self-guided attention for medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(1): 121-130.
[24] LIN A L, CHEN B Z, XU J Y, et al. DS-TransUNet: dual swin transformer U-Net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15.
[25] HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1748-1758.
[26]GAO Y, ZHOU M, METAXAS D N. UTNet: a hybrid transformer architecture for medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2021: 61-71.
[27] ZHOU H Y, GUO J S, ZHANG Y H, et al. nnFormer: interleaved transformer for volumetric segmentation[J]. arXiv:2109.03201, 2021.
[28] XIE Y, ZHANG J, SHEN C, et al. CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, 2021: 171-180.
[29] HUO X Z, SUN G, TIAN S W, et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification[J]. Biomedical Signal Processing and Control, 2024, 87: 105534.
[30] ZHANG B, WANG Y, DING C F, et al. Multi-scale feature pyramid fusion network for medical image segmentation[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18(2): 353-365.
[31] SRIVASTAVA A, JHA D, CHANDA S, et al. MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(5): 2252-2263.
[32] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[33] SHEN Z R, ZHANG M Y, ZHAO H Y, et al. Efficient attention: attention with linear complexities[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3530-3538.
[34] ALI A, TOUVRON H, CARON M, et al. XCiT: cross-covariance image transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 20014-20027.
[35] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[36] SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53: 197-207.
[37] SUN J D, ZHAO J Q, WU X S, et al. DSGA-Net: deeply separable gated transformer and attention strategy for medical image segmentation network[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(5): 101553.
[38] LI J, CHEN N, ZHOU H, et al. MCRformer: morphological constraint reticular transformer for 3D medical image segmentation[J]. Expert Systems with Applications, 2023, 232: 120877.
[39] HUANG T Y, CHEN J X, JIANG L F. DS-UNeXt: depthwise separable convolution network with large convolutional kernel for medical image segmentation[J]. Signal, Image and Video Processing, 2023, 17(5): 1775-1783.
[40] WANG J, ZHAO H Y, LIANG W, et al. Cross-convolutional transformer for automated multi-organs segmentation in a variety of medical images[J]. Physics in Medicine & Biology, 2023, 68(3): 035008. |