[1] 梁华刚, 黄伟浩, 薄颖, 等. 基于多特征融合的隧道场景车辆再识别[J]. 中国公路学报, 2023, 36(8): 280-291.
LIANG H G, HUANG W H, BO Y, et al. Multifeature-fusion-based vehicle reidentification for tunnel scenes[J]. China Journal of Highway and Transport, 2023, 36(8): 280-291.
[2] 叶发茂, 张立, 袁燎, 等. DB-YOLO: 特征增强融合的双骨干YOLOv8道路缺陷检测模型[J]. 计算机工程与应用, 2024, 60(24): 260-269.
YE F M, ZHANG L, YUAN L, et al. DB-YOLO: dual backbone YOLOv8 model with feature enhancement fusion for road defect detection[J]. Computer Engineering and Applictions, 2024, 60(24): 260-269.
[3] 董一兵, 曾辉, 侯少杰. LMUAV-YOLOv8: 低空无人机视觉目标检测轻量化网络[J]. 计算机工程与应用, 2025, 61(3): 94-110.
DONG Y B, ZENG H, HOU S J. LMUAV-YOLOv8: a lightweight network for object detection in low-altitude UAV vision[J]. Computer Engineering and Applictions, 2025, 61(3): 94-110.
[4] 朱齐齐, 陈西曲. 基于改进YOLOv5的轻量级果园苹果检测算法[J]. 江苏农业科学, 2024, 52(17): 200-208.
ZHU Q Q, CHEN X Q. Lightweight orchard apple detection algorithm based on improved YOLOv5[J]. Jiangsu Agricultural Sciences, 2024, 52(17): 200-208.
[5] XU Y P, XIE Y Q, YU R, Integrated perception-communication-logistics multi-objective[J]. Journal on Communications, 2024, 45(4): 1-12.
[6] GUPTA A, MAHAUR B. An improved DV-MaxHop localization algorithm for wireless sensor networks[J]. Wireless Personal Communications, 2021, 117(3): 2341-2357.
[7] 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214.
LI L, JIN Z X, YU X L, et al. Haar wavelet downsampling optimization of YOLOv9 road vehicle and pedestrian detection[J]. Computer Engineering and Applications, 2024, 60(20): 207-214.
[8] YU B Y, LI Z X, CAO Y, et al. YOLO-MPAM: efficient real-time neural networks based on multi-channel feature fusion[J]. Expert Systems with Applications, 2024, 252: 124282.
[9] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[10] WANG H, LIU C Y, CAI Y F, et al. YOLOv8-QSD: an improved small object detection algorithm for autonomous vehicles based on YOLOv8[J]. IEEE Transactions on Instrumentation Measurement, 2024, 73: 3379090.
[11] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
[12] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[13] WANG T, QU H, LIU C, et al. LLE-STD: traffic sign detection method based on low-light image enhancement and small target detection[J]. Mathematics, 2024, 12(19): 3125.
[14] LI C, GUO C, HAN L, et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9396-9416.
[15] WANG W J, YANG W H, LIU J Y. HLA-face: joint high-low adaptation for low light face detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16190-16199.
[16] SU P, HAN H Z, LIU M, et al. MOD-YOLO: rethinking the YOLO architecture at the level of feature information and applying it to crack detection[J]. Expert Systems with Applications, 2024, 237: 121346.
[17] PAN H, GUAN S P, ZHAO X Y. LVD-YOLO: an efficient lightweight vehicle detection model for intelligent transportation systems[J]. Image and Vision Computing, 2024, 151: 105276.
[18] JIANG Z K, LIU L, ZHANG J N, et al. Dual path transformer with partition attention[J]. arXiv:2305.14768, 2023.
[19] TAN M X, LE Q V. Efficientnetv2: smaller models and faster training[C]//Proceedings of the International Conference on Machine Learning, 2021: 10096-10106.
[20] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[21] HUANG Y S, JIANG Z T, LAN R S, et al. Infrared image super-resolution via transfer learning and PSRGAN[J]. IEEE Signal Processing Letters, 2021, 28: 982-986.
[22] WEI H T, YU B, WANG W, et al. Adaptive enhanced detection network for low illumination object detection[J]. Mathematics, 2023, 11(10): 2404.
[23] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703.
[24] DAUPHI Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the International Conference on Machine Learning, 2017: 933-941.
[25] ZHANG T F, LI L, ZHOU Y, et al. CAS-ViT: convolutional additive self-attention vision transformers for efficient mobile applications[J]. arXiv:2408.03703, 2024.
[26] LIN T Y, DOLLAR P. GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2117-2125.
[27] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[28] YANG Z Q, GUAN Q, ZHAO K E, et al. Multi-branch auxiliary fusion YOLO with re-parameterization heterogeneous convolutional for accurate object detection[C]//Proceedings of the Pattern Recognition and Computer Vision. Singapore: Springer Nature Singapore, 2025: 492-505.
[29] XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211. 15444, 2022.
[30] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[31] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189.
[32] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[33] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[34] YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[J]. arXiv:1805.04687, 2018.
[35] ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118. |