[1] AL-KHALDI M M, JOHNSON J T, GLEASON S, et al. Inland water body mapping using CYGNSS coherence detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7385-7394.
[2] EL-ALEM A, CHOKMANI K, LAURION I, et al. Ensemble-based systems to monitor algal bloom with remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7955-7971.
[3] LUO X, LI X X, WU Y X, et al. Research on change detection method of high-resolution remote sensing images based on subpixel convolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1447-1457.
[4] HE X, CHEN Y S, HUANG L B. Bayesian deep learning for hyperspectral image classification with low uncertainty[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5506916.
[5] ZHU X X, TUIA D, MOU L C, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36.
[6] LIN H N, SHI Z W, ZOU Z X. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1665-1669.
[7] FENG W Q, SUI H G, HUANG W M, et al. Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 618-622.
[8] LI R R, LIU W J, YANG L, et al. DeepUNet: a deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3954-3962.
[9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[10] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[11] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[12] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[13] MA D L, LIU B Z, HUANG Q J, et al. MwdpNet: towards improving the recognition accuracy of tiny targets in high-resolution remote sensing image[J]. Scientific Reports, 2023, 13(1): 13890.
[14] DAI M C, LENG X G, XIONG B L, et al. An efficient water segmentation method for SAR images[C]//Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2020: 1129-1132.
[15] YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 334-349.
[16] DIRSCHERL M, DIETZ A J, KNEISEL C, et al. A novel method for automated supraglacial lake mapping in Antarctica using sentinel-1 SAR imagery and deep learning[J]. Remote Sensing, 2021, 13(2): 197.
[17] REN Y B, LI X F, YANG X F, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4010205.
[18] LIU Z H, CHEN X M, ZHOU S P, et al. DUPnet: water body segmentation with dense block and multi-scale spatial pyramid pooling for remote sensing images[J]. Remote Sensing, 2022, 14(21): 5567.
[19] MIAO R, REN T C, ZHOU K, et al. A method of water body extraction based on multiscale feature and global context information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12138-12152.
[20] QI H C, KONG X W, CHENG L, et al. Addressing fine-grained lake water body extraction: a hybrid approach combining vision transformer and geodesic active contour[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4204614.
[21] WANG R F, ZHANG C C, CHEN C, et al. A multi-modality fusion and gated multi-filter U-Net for water area segmentation in remote sensing[J]. Remote Sensing, 2024, 16(2): 419.
[22] WEI D B, XIE H J, LI P R, et al. A learning framework with multispectral band-differentiated encoding for remote sensing water body detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6278-6289.
[23] HUANG H M, LIN L F, TONG R F, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059.
[24] SIMONYAN K, ZISSERMAN A J C S. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
[25] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460.
[26] LONG W, ZHANG Y J, CUI Z W, et al. Threshold attention network for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4600312.
[27] KANG J, GUAN H Y, MA L F, et al. WaterFormer: a coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 206: 222-241. |