[1] 徐艺博, 于清华, 王炎娟, 等. 基于多源信息融合的巡飞弹对地目标识别与毁伤评估[J]. 系统仿真学报, 2024, 36(2): 511-521.
XU Y B, YU Q H, WANG Y J, et al. Ground target recognition and damage assessment of patrol missiles based on multi-source information fusion[J]. Journal of System Simulation, 2024, 36(2): 511-521.
[2] 朱学岩, 张新伟, 顾梦梦, 等. 基于无人机可见光图像的云杉计数方法[J]. 林业工程学报, 2021, 6(4): 140-146.
ZHU X Y, ZHANG X W, GU M M, et al. Spruce counting method based on UAV visible images[J]. Journal of Forestry Engineering, 2021, 6(4): 140-146.
[3] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519.
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519.
[4] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[10] LI Z X, YANG L, ZHOU F Q. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017.
[11] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590-601.
LIU Y, LIU H Y, FAN J L, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590-601.
[12] SIMARD P Y, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networks applied to visual document analysis[C]//Proceedings of the Seventh International Conference on Document Analysis and Recognition. Piscataway: IEEE, 2003: 958-963.
[13] WANG S H. An augmentation small object detection method based on NAS-FPN[C]//Proceedings of the 2020 7th International Conference on Information Science and Control Engineering. Piscataway: IEEE, 2020: 213-218.
[14] YAEGER L, LYON R, WEBB B. Effective training of a neural network character classifier for word recognition[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems, 1996.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[16] LI W J, TAN X F, WANG Z J. Small object detection of table tennis based on deep learning network[C]//Proceedings of the 2020 International Conference on Computer Science and Management Technology. Piscataway: IEEE, 2020: 149-152.
[17] CORES D, BREA V M, MUCIENTES M, et al. Downsampling GAN for small object data augmentation[C]//Proceedings of the 20th International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 2023: 89-98.
[18] KIM J H, HWANG Y. GAN-based synthetic data augmentation for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5002512.
[19] ZHOU Z Q, QI L, YANG X, et al. Generalizable cross-modality medical image segmentation via style augmentation and dual normalization[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20824-20833.
[20] SREENIVAS M, BISWAS S. Similar class style augmentation for efficient cross-domain few-shot learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2023: 4590-4598.
[21] PHILIP T J, AMIR A A, STEPHEN B, et al. Style augmentation: data augmentation via style randomization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 83-92.
[22] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[23] LIU Z M, GAO G Y, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2021: 1-6.
[24] DENG C F, WANG M M, LIU L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
[25] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[26] QIAO Z T, SHI D X, YI X D, et al. UEFPN: unified and enhanced feature pyramid networks for small object detection[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(2s): 1-21.
[27] ZHENG L, PENG Y P, YE Z C, et al. Infrared small UAV target detection algorithm based on enhanced adaptive feature pyramid networks[J]. IEEE Access, 2022, 10: 115988-115995.
[28] 蒋伟, 王万虎, 杨俊杰. AEM-YOLOv8s: 无人机航拍图像的小目标检测[J]. 计算机工程与应用, 2024, 60(17): 191-202.
JIANG W, WANG W H, YANG J J. AEM-YOLOv8s: small target detection algorithm for UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(17): 191-202.
[29] ZHOU J T, XU Q, ZHAO X R, et al. CA2Det: cascaded adaptive fusion pyramid network based on attention mechanism for small object detection[J]. IEEE Access, 2024, 12: 56924-56935.
[30] ZHONG S S, ZHOU H B, ZHENG Z X, et al. Hierarchical attention-guided multiscale aggregation network for infrared small target detection[J]. Neural Networks, 2024, 171: 485-496.
[31] XU S K, GU J N, HUA Y N, et al. DKTNet: dual-key Transformer network for small object detection[J]. Neurocomputing, 2023, 525: 29-41.
[32] WANG L, SHI Y, MAO G J, et al. Consumer-centric insights into resilient small object detection: sciou loss and recursive transformer network[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 2178-2187.
[33] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[34] CHEN G, WANG H T, CHEN K, et al. A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 936-953.
[35] 张稀柳, 张晓玲, 何敏军. 基于改进YOLOX-s的车辆检测方法研究[J]. 系统仿真学报, 2024, 36(2): 487-496.
ZHANG X L, ZHANG X L, HE M J. Research on vehicle detection method based on improved YOLOX-s[J]. Journal of System Simulation, 2024, 36(2): 487-496.
[36] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[37] RAO Y M, ZHAO W L, TANG Y S, et al. HorNet: efficient high-order spatial interactions with recursive gated convolutions[J]. arXiv:2207.14284, 2022.
[38] ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 227-235.
[39] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[40] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703.
[41] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[42] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[J]. arXiv:2404. 10518, 2024.
[43] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[44] YANG C, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13658-13667.
[45] WANG J J, YU J, HE Z. ARFP: a novel adaptive recursive feature pyramid for object detection in aerial images[J]. Applied Intelligence, 2022, 52(11): 12844-12859.
[46] ZHANG Z X. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[47] YE T, ZHAO Z Y, ZHANG J, et al. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853.
[48] XIAO H, XIE X M, ZHAO K, et al. YOLO-Q: drone aerial target detection[C]//Proceedings of the 2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning. Piscataway: IEEE, 2023: 13-20.
[49] ZHANG H Y, CHEN E Y. Bi-AFN++CA: bi-directional adaptive fusion network combining context augmentation for small object detection[J]. Applied Intelligence, 2024, 54(1): 614-628.
[50] LI S X, LIU C, TANG K W, et al. Improved YOLOv5s algorithm for small target detection in UAV aerial photography[J]. IEEE Access, 2024, 12: 9784-9791.
[51] SHI T, DING Y, ZHU W X. YOLOv5s_2E: improved YOLOv5s for aerial small target detection[J]. IEEE Access, 2023, 11: 80479-80490. |