[1] LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3(2): 141-155.
[2] SACHS J D, SCHMIDT-TRAUB G, MAZZUCATO M, et al. Six transformations to achieve the sustainable development goals[J]. Nature Sustainability, 2019, 2(9): 805-814.
[3] SLAMERSAK A, KALLIS G, O’NEILL D W. Energy requirements and carbon emissions for a low-carbon energy transition[J]. Nature Communications, 2022, 13(1): 6932.
[4] SHUKLA P R, SKEA J, SLADE R, et al. Climate change 2022: mitigation of climate change[M]. Cambridge: Cambridge University Press, 2023.
[5] REN S M, HU W, BRADBURY K, et al. Automated extraction of energy systems information from remotely sensed data: a review and analysis[J]. Applied Energy, 2022, 326: 119876.
[6] JIE Y S, JI X H, YUE A Z, et al. Combined multi-layer feature fusion and edge detection method for distributed photovoltaic power station identification[J]. Energies, 2020, 13(24): 6742.
[7] 吴永静, 吴锦超, 林超, 等. 基于深度学习的高分辨率遥感影像光伏用地提取[J]. 测绘通报, 2021(5): 96-101.
WU Y J, WU J C, LIN C, et al. Photovoltaic land extraction from high-resolution remote sensing images based on deep learning method[J]. Bulletin of Surveying and Mapping, 2021(5): 96-101.
[8] 李青, 李海涛, 李辉, 等. 注意力机制和全局卷积在光伏板分割中的应用[J]. 计算机工程与应用, 2024, 60(4): 237-248.
LI Q, LI H T, LI H, et al. Photovoltaic panel segmentation using attention mechanism and global convolution[J]. Computer Engineering and Applications, 2024, 60(4): 237-248.
[9] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[10] CHEN H T, WANG Y H, GUO T Y, et al. Pre-trained image processing transformer[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12294-12305.
[11] DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[J]. arXiv:1708. 04552, 2017.
[12] ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 13001-13008.
[13] SINGH K K, YU H, SARMASI A, et al. Hide-and-seek: a data augmentation technique for weakly-supervised locali- zation and beyond[J]. arXiv:1811.02545, 2018.
[14] CHEN P, LIU S, ZHAO H, et al. Gridmask data augmentation[J]. arXiv:2001.04086, 2020.
[15] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[16] MITTAL S, TATARCHENKO M, BROX T. Semi-supervised semantic segmentation with high-and low-level consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(4): 1369-1379.
[17] CHEN X K, YUAN Y H, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2613-2622.
[18] SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[J]. arXiv:2001.07685, 2020.
[19] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[J]. arXiv:2006.09882, 2020.
[20] BERTHELOT D, CARLINI N, CUBUK E D, et al. Remixmatch: semi-supervised learning with distribution alignment and augmentation anchoring[J]. arXiv:1911.09785, 2019.
[21] ISLAM M A, JIA S, BRUCH N D B. How much position information do convolutional neural networks encode?[J]. arXiv:2001.08248, 2020.
[22] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[23] WU H P, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 22-31.
[24] JIANG H, YAO L, LU N, et al. Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery[J]. Earth System Science Data, 2021, 13(11): 5389-5401.
[25] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[26] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11.
[27] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[28] YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 334-349.
[29] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems, 2021: 12077-12090.
[30] GU J Q, KWON H, WANG D L, et al. Multi-scale high-resolution vision transformer for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12084-12093.
[31] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1195-1204.
[32] YANG L H, ZHUO W, QI L, et al. ST++: make self-trainingwork better for semi-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267. |