[1] BONDIELLI A, MARCELLONI F. A survey on fake news and rumour detection techniques[J]. Information Sciences, 2019, 497: 38-55.
[2] SINGH V K, GHOSH I, SONAGARA D. Detecting fake news stories via multimodal analysis[J]. Journal of the Association for Information Science and Technology, 2021, 72(1): 3-17.
[3] IBRAHIM E, FATTOH D, ALI F, et al. Fake news detection based on word and document embedding using machine learning classifiers[C]//Proceedings of the 2nd International Workshop on Human-Centric Smart Environments for Health and Well-Being, 2021: 125-130.
[4] AHMAD I, YOUSAF M, YOUSAF S, et al. Fake news detection using machine learning ensemble methods[J]. Complexity, 2020, 2020: 8885861.
[5] PIERRI F, CERI S. False news on social media[J]. ACM SIGMOD Record, 2019, 48(2): 18-27.
[6] NGADIRON S, AZIZ A A, MOHAMED S S. The spread of covid-19 fake news on social media and its impact among malaysians[J]. International Journal of Law, Government and Communication, 2021, 6(22): 253-260.
[7] SEGURA-BEDMAR I, ALONSO-BARTOLOME S. Multimodal fake news detection[J]. Information, 2022, 13(6): 284.
[8] ZHANG T, WANG D, CHEN H H, et al. BDANN: BERT-based domain adaptation neural network for multi-modal fake news detection[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
[9] LI S, YAO T, LI S, et al. Semantic‐enhanced multimodal fusion network for fake news detection[J]. International Journal of Intelligent Systems, 2022, 37(12): 12235-12251.
[10] REN Y F, JI D H. Neural networks for deceptive opinion spam detection: an empirical study[J]. Information Sciences, 2017, 385: 213-224.
[11] LIU C, WU X H, YU M, et al. A two-stage model based on BERT for short fake news detection[C]//Proceedings of the 12th International Conference on Knowledge Science, Engineering and Management, 2019: 172-183.
[12] SEPúLVEDA-TORRES R, VICENTE M, SAQUETE E, et al. HeadlineStanceChecker: exploiting summarization to detect headline disinformation[J]. Journal of Web Semantics, 2021, 71: 100660.
[13] AMAAR A, ALJEDAANI W, RUSTAM F, et al. Detection of fake job postings by utilizing machine learning and natural language processing approaches[J]. Neural Processing Letters, 2022, 54(3): 2219-2247.
[14] HUANG Y Q, GAO M, WANG J, et al. Meta-prompt based learning for low-resource false information detection[J]. Information Processing & Management, 2023, 60(3): 103279.
[15] QI P, CAO J, YANG T Y, et al. Exploiting multi-domain visual information for fake news detection[C]//Proceedings of the IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 518-527.
[16] JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 795-816.
[17] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection[C]//Proceedings of the IEEE 5th International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47.
[18] WANG Y Q, MA F L, JIN Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 849-857.
[19] LIU H, WANG W, LI H. Towards multi-modal sarcasm detection via hierarchical congruity modeling with knowledge enhancement[J]. arXiv:2210.03501, 2022.
[20] SONG C G, NING N W, ZHANG Y L, et al. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks[J]. Information Processing & Management, 2021, 58(1): 102437.
[21] SILVA A, LUO L, KARUNASEKERA S, et al. Embracing domain differences in fake news: cross-domain fake news detection using multi-modal data[J]. arXiv:2102,06314, 2021.
[22] XUE J X, WANG Y B, TIAN Y C, et al. Detecting fake news by exploring the consistency of multimodal data[J]. Information Processing & Management, 2021, 58(5): 102610.
[23] NAN Q, CAO J, ZHU Y C, et al. MDFEND: multi-domain fake news detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3343-3347.
[24] XIANG N. Deep learning-based fake information detection and influence evaluation[J]. Computational Intelligence and Neuroscience?, 2022, 2022: 8514430.
[25] LIU P, QIAN W, XU D, et al. Multi-modal fake news detection via bridging the gap between modals[J]. Entropy(Basel), 2023, 25(4): 614.
[26] KUMAR A, TAYLOR J W. Feature importance in the age of explainable AI: case study of detecting fake news & misinformation via a multi-modal framework[J]. European Journal of Operational Research, 2024, 317(2): 401-413.
[27] 刘华玲, 陈尚辉, 乔梁, 等. 多模态混合注意力机制的虚假新闻检测研究[J]. 计算机工程与应用, 2023, 59(9): 95-103.
LIU H L, CHEN S H, QIAO L, et al. Multimodal false news detection based on fusion attention mechanism[J]. Computer Engineering and Applications, 2023, 59(9): 95-103.
[28] ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification[J]. arXiv:1510.03820, 2015.
[29] CHEN J P, ZHANG F, LI H, et al. EMPNet: an extract-map-predict neural network architecture for cross-domain recommendation[J]. World Wide Web, 2024, 27(2): 12.
[30] CHEN J P, LI H Y, ZHANG X D, et al. SR-HetGNN: session-based recommendation with heterogeneous graph neural network[J]. Knowledge and Information Systems, 2024, 66(2): 1111-1134.
[31] CHEN J P, CAO Y, ZHANG F, et al. Sequential intention-aware recommender based on user interaction graph[C]//Proceedings of the International Conference on Multimedia Retrieval. New York: ACM, 2022: 118-126.
[32] LIU X Q, LI X Y, CAO Y, et al. Mandari: multi-modal temporal knowledge graph-aware sub-graph embedding for next-POI recommendation[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 1529-1534.
[33] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[34] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision [J]. arXiv:2103.00020, 2021.
[35] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[J]. arXiv:1409.7495, 2014.
[36] BOIDIDOU C, ANDREADOU K, PAPADOPOULOS S, et al. Verifying multimedia use at MediaEval 2015[C]//Proceedings of the MediaEval 2015 workshop, 2015.
[37] JIN Z W, CAO J, JIANG Y G, et al. News credibility evaluation on microblog with a hierarchical propagation model[C]//Proceedings of the IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 230-239.
[38] AGRAWAL A, LU J S, ANTOL S, et al. VQA: visual question answering[J]. International Journal of Computer Vision, 2017, 123(1): 4-31.
[39] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 2915-2921.
[40] CHEN Y X, LI D S, ZHANG P, et al. Cross-modal ambiguity learning for multimodal fake news detection[C]//Proceedings
of the ACM Web Conference. New York: ACM, 2022: 2897-2905.
[41] JIANG Y, YU X M, WANG Y M, et al. Similarity-aware multimodal prompt learning for fake news detection[J]. Information Sciences, 2023, 647: 119446.
[42] CHEN Z W, HU L M, LI W X, et al. Causal intervention and counterfactual reasoning for multi-modal fake news detection[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 627-638.
[43] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[44] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |