[1] LIU Y, WU L J. Intrusion detection model based on improved transformer[J]. Applied Sciences-Basel, 2023, 13(10): 6251.
[2] DíAZ-VERDEJO J, MU?OZ-CALLE J, ALONSO A E, et al. On the detection capabilities of signature-based intrusion detection systems in the context of Web attacks[J]. Applied Sciences-Basel, 2022, 12(2): 852.
[3] KWON H Y, KIM T, LEE M K. Advanced intrusion detection combining signature-based and behavior-based detection methods[J]. Electronics, 2022, 11(6): 867.
[4] XIN Y, KONG L S, LIU Z, et al. Machine learning and deep learning methods for cybersecurity[J]. IEEE Access, 2018, 6: 35365-35381.
[5] ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58: 121-134.
[6] AL-YASEEN W L, IDREES A K, ALMASOUDY F H. Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system[J]. Pattern Recognition, 2022, 132: 108912.
[7] 李道全, 祝圣凯, 翟豫阳, 等. 基于特征选择与改进的Tri-training的半监督网络流量分类[J]. 计算机工程与应用,2024, 60(23): 275-285.
LI D Q, ZHU S K, ZHAI Y Y, et al. Semi-supervised network traffic classification based on feature selection and improved tri-training[J]. Computer Engineering and Applications, 2024, 60(23): 275-285.
[8] DAMTEW Y G, CHEN H M, YUAN Z. Heterogeneous ensemble feature selection for network intrusion detection system[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 9.
[9] 杨彦荣, 宋荣杰, 周兆永. 基于GAN-PSO-ELM的网络入侵检测方法[J]. 计算机工程与应用, 2020, 56(12): 66-72.
YANG Y R, SONG R J, ZHOU Z Y. Network intrusion detection method based on GAN-PSO-ELM[J]. Computer Engineering and Applications, 2020, 56(12): 66-72.
[10] CHAPANERI R, SHAH S. Enhanced detection of imbalanced malicious network traffic with regularized generative adversarial networks[J]. Journal of Network and Computer Applications, 2022, 202: 103368.
[11] SAYEGH H R, DONG W, AL-MADANI A M. Enhanced intrusion detection with LSTM-based model, feature selection, and SMOTE for imbalanced data[J]. Applied Sciences-Basel, 2024, 14(2): 479.
[12] FU Z Y. Computer network intrusion anomaly detection with recurrent neural network[J]. Mobile Information Systems, 2022(1): 6576023.
[13] YAO R Z, WANG N, LIU Z H, et al. Intrusion detection system in the advanced metering infrastructure: a cross-layer feature-fusion CNN-LSTM-based approach[J]. Sensors, 2021, 21(2): 626.
[14] IMRANA Y, XIANG Y P, ALI L, et al. A bidirectional LSTM deep learning approach for intrusion detection[J]. Expert Systems with Applications, 2021, 185: 115524.
[15] XU C Y, SHEN J Z, DU X, et al. An intrusion detection system using a deep neural network with gated recurrent units[J]. IEEE Access, 2018, 6: 48697-48707.
[16] LI L, HU M, REN F J, et al. Temporal attention based TCN-BIGRU model for energy time series forecasting[C]//Proceedings of the 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering. Piscataway: IEEE, 2021: 187-193.
[17] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway: IEEE, 2009: 1-6.
[18] 段海滨, 叶飞. 鸽群优化算法研究进展[J]. 北京工业大学学报, 2017, 43(1): 1-7.
DUAN H B, YE F. Progresses in pigeon-inspired optimization algorithms[J]. Journal of Beijing University of Technology, 2017, 43(1): 1-7.
[19] ALAZZAM H, SHARIEH A, SABRI K E. A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer[J]. Expert Systems with Applications, 2020, 148: 113249.
[20] SUN Y, QUE H K, CAI Q Q, et al. Borderline SMOTE algorithm and feature selection-based network anomalies detection strategy[J]. Energies, 2022, 15(13): 4751.
[21] WU Z H, ZHANG H, WANG P H, et al. RTIDS: a robust transformer-based approach for intrusion detection system[J]. IEEE Access, 2022, 10: 64375-64387. |