[1] 屈猛,庞小平, 赵羲, 等. 利用多源遥感数据识别波弗特海冰间水道[J]. 武汉大学学报 (信息科学版), 2019, 44(6): 917-924.
QU M, PANG X P, ZHAO X, et al. Detection of sea ice lead in Beaufort Sea based on multisensory remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 917-924.
[2] 屈猛, 赵羲, 庞小平, 等. 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022, 37(4): 382-391.
QU M, ZHAO X, PANG X P, et al. Review of Arctic Sea ice leads: physics and remote sensing[J]. Advances in Earth Science, 2022, 37(4): 382-391.
[3] HOFFMAN J P, ACKERMAN S A, LIU Y H, et al. Application of a convolutional neural network for the detection of sea ice leads[J]. Remote Sensing, 2021, 13(22): 4571.
[4] 罗杨, 卞春江, 陈红珍. 基于特征解耦的SAR图像舰船检测蒸馏[J]. 计算机工程与应用, 2024, 60(2): 171-179.
LUO Y, BIAN C J, CHEN H Z. Distillation for SAR ship detectors based on decoupled features[J]. Computer Engineering and Applications, 2024, 60(2): 171-179.
[5] KOMAROV A S, BUEHNER M. Adaptive probability thresholding in automated ice and open water detection from RADARSAT?2 images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 552-556.
[6] MURASHKIN D, SPREEN G, HUNTEMANN M, et al. Method for detection of leads from Sentinel-1 SAR images[J]. Annals of Glaciology, 2018, 59(76pt2): 124-136.
[7] LIANG Z Y, PANG X P, JI Q, et al. An entropy-weighted network for polar sea ice open lead detection from Sentinel-1 SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304714.
[8] LIU S W, LI M C, XU M M, et al. An improved lightweight U-Net for sea ice lead extraction from multi-polarization SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 2000705.
[9] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[10] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[11] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[12] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[13] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[14] XU Y Y, XIE Z, FENG Y X, et al. Road extraction from high-resolution remote sensing imagery using deep learning[J]. Remote Sensing, 2018, 10(9): 1461.
[15] 沈怀艳, 吴云. 基于MSFA-Net的肝脏CT图像分割方法[J]. 计算机科学与探索, 2023, 17(3): 646-656.
SHEN H Y, WU Y. Liver CT image segmentation method based on MSFA-net[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[17] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision, 2016: 565-571.
[18] 龙丽红, 朱宇霆, 闫敬文, 等. 新型语义分割D-UNet的建筑物提取[J]. 遥感学报, 2023, 27(11): 2593-2602.
LONG L H, ZHU Y T, YAN J W, et al. New building extraction method based on semantic segmentation[J]. National Remote Sensing Bulletin, 2023, 27(11): 2593-2602.
[19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[20] FILIPPONI F. Sentinel-1 GRD preprocessing workflow[C]//Proceedings of the 3rd International Electronic Conference on Remote Sensing, 2019: 11.
[21] ZAKHVATKINA N, SMIRNOV V, BYCHKOVA I, et al. Detection of the leads in the Arctic drifting sea ice on SAR images[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2021: 4276-4279.
[22] HONG D B, YANG C S. Automatic discrimination approach of sea ice in the Arctic Ocean using Sentinel-1 Extra Wide Swath dual-polarized SAR data[J]. International Journal of Remote Sensing, 2018, 39(13): 4469-4483.
[23] PASSARO M, MüLLER F L, DETTMERING D. Lead detection using Cryosat-2 delay-Doppler processing and Sentinel-1 SAR images[J]. Advances in Space Research, 2018, 62(6): 1610-1625.
[24] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[25] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. |