计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 120-132.DOI: 10.3778/j.issn.1002-8331.2401-0193

• 模式识别与人工智能 • 上一篇    下一篇

面向长期时间序列预测的多项式投影与信息交换架构

刘建鑫,马廷淮,苏昱铭,荣欢   

  1. 1.南京信息工程大学 软件学院,南京 210044
    2.江苏海洋大学 计算机工程学院,江苏 连云港 222000
    3.南京信息工程大学 人工智能学院,南京 210044
  • 出版日期:2025-05-15 发布日期:2025-05-15

Polynomial Projection and Information Exchange Architecture for Long-Term Time Series Forecasting

LIU Jianxin, MA Tinghuai, SU Yuming, RONG Huan   

  1. 1.School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.School of Computer Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222000, China
    3.School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 长期时间序列预测利用历史数据对未来较远时段的序列走势进行预测,为长期预警、规划和决策提供支持。现有方法在进行长期预测时,普遍存在分布偏移和长期依赖关系难以捕获的问题。提出一种面向长期时间序列预测的多项式投影与信息交换架构LPPIEA(Legendre polynomial projection and information exchange architecture)。引入可逆实例数据归一化,降低长期时间序列中分布偏移对预测的影响。使用勒让德多项式投影来处理复杂的时间模式,获取数据的高维特征表示以增强模型推理长期时间序列的能力。为了有效捕获长期时间依赖关系,构建轻量化的信息交换架构来高效捕获长期时间依赖关系,从而实现准确高效的长期时间序列预测。在4个常用的公开数据集上的实验结果表明,LPPIEA的预测误差相比于基线方法平均降低11.4%,同时还具有较高的计算效率。

关键词: 时间序列预测, 长期时间依赖, 多项式投影, 信息交换架构, 深度学习

Abstract: Long-term time series forecasting utilizes historical data to predict the trends of future sequences over extended periods, providing support for long-term warning, planning, and decision-making. Existing methods commonly encounter issues of distribution shifts and long-term dependencies that are difficult to capture when conducting long-term forecasting. This paper proposes a Legendre polynomial projection and information exchange architecture (LPPIEA) tailored for long-term time series forecasting. Reversible instance data normalization is introduced to reduce the influence of distribution shifts in long-term time series on predictions. Legendre polynomial projection is employed to handle complex temporal patterns, acquiring high-dimensional feature representations of the data to enhance the model inference capability for long-term time series. To effectively capture long-term temporal dependencies, a lightweight information exchange architecture is constructed to efficiently capture such dependencies, thus achieving accurate and efficient long-term time series forecasting. Experimental results on four commonly used public datasets demonstrate that the LPPIEA model reduces prediction errors by an average of 11.4% compared to baseline methods, while exhibiting higher computational efficiency.

Key words: time series forecasting, long-term temporal dependencies, polynomial projection, information exchange architecture, deep learning