[1] WU Q, ZHANG J, LAI Y K, et al. Alive caricature from 2D to 3D[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7336-7345.
[2] KING D E. Dlib-ml: a machine learning toolkit[J]. Journal of Machine Learning Research, 2009, 10: 1755-1758.
[3] CAI H, GUO Y, PENG Z, et al. Landmark detection and 3D face reconstruction for caricature using a nonlinear parametric model[J]. Graphical Models, 2021, 115: 101103.
[4] YE Z, XIA M, SUN Y, et al. 3D-CariGAN: an end-to-end solution to 3D caricature generation from normal face photos[J]. IEEE Transactions on Visualization and Computer Graphics, 2023,?29(4): ?2203-2210.
[5] LIU F, TRAN L, LIU X. 3D face modeling from diverse raw scan data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9408-9418.
[6] SAITO S, HUANG Z, NATSUME R, et al. PIFu: pixel-aligned implicit function for high-resolution clothed human digitization[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 2304-2314.
[7] LI S, SU S, LIN J, et al. Deep 3D caricature face generation with identity and structure consistency[J]. Neurocomputing, 2021, 454: 178-188.
[8] HUANG M, DAI J, PAN J, et al. 3D-CariNet: end-to-end 3D caricature generation from natural face images with differentiable renderer[C]//Proceedings of the 29th Pacific Conference on Computer Graphics and Applications, 2021.
[9] QIU Y, XU X, QIU L, et al. 3DCaricShop: a dataset and a baseline method for single-view 3D caricature face reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10236-10245.
[10] JUNG Y, JANG W, KIM S, et al. Deep deformable 3D caricatures with learned shape control[C]//Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference, 2022: 1-9.
[11] LV J, SHAO X, XING J, et al. A deep regression architecture with two-stage re-initialization for high performance facial landmark detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3317-3326.
[12] TRIGEORGIS G, SNAPE P, NICOLAOU M A, et al. Mnemonic descent method: a recurrent process applied for end-to-end face alignment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4177-4187.
[13] NEWELL A, YANG K, DENG J. Stacked Hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer International Publishing, 2016: 483-499.
[14] SUN K, ZHAO Y, JIANG B, et al. High-resolution representations for labeling pixels and regions[J]. arXiv:1904.04514, 2019.
[15] NIBALI A, HE Z, MORGAN S, et al. Numerical coordinate regression with convolutional neural networks[J]. arXiv:1801.07372, 2018.
[16] HAO-PAN R E N, WEN-MING W, DE-JIAN W E I, et al. Human pose estimation based on high-resolution net[J]. Journal of Graphics, 2021, 42(3): 432.
[17] WANG X, WANG W, LU J, et al. HRST: an improved HRNet for detecting joint points of pigs[J]. Sensors, 2022, 22(19): 7215.
[18] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[20] WU W, CAI Y, ZHOU Q. Transmarker: a pure vision transformer for facial landmark detection[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), 2022: 3580-3587.
[21] LI J, JIN H, LIAO S, et al. RePFormer: refinement pyramid transformer for robust facial landmark detection[J]. arXiv:2207.03917, 2022.
[22] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[23] PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 165-174.
[24] MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4460-4470.
[25] LIN C H, WANG C, LUCEY S. SDF-SRN: learning signed distance 3D object reconstruction from static images[C]//Advances in Neural Information Processing Systems, 2020: 11453-11464.
[26] TANCIK M, SRINIVASAN P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[C]//Advances in Neural Information Processing Systems, 2020: 7537-7547.
[27] LANDGRAF Z, HORNUNG A S, CABRAL R S. PINs: progressive implicit networks for multi-scale neural representations[J]. arXiv:2202.04713, 2022.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[29] HUO J, LI W, SHI Y, et al. WebCaricature: a benchmark for caricature recognition[J]. arXiv:1703.03230, 2017.
[30] LI W, XIONG W, LIAO H, et al. CariGAN: caricature generation through weakly paired adversarial learning[J]. Neural Networks, 2020, 132: 66-74.
[31] ZAFEIRIOU S, TRIGEORGIS G, CHRYSOS G, et al. The menpo facial landmark localisation challenge: a step towards the solution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 170-179.
[32] KOWALSKI M, NARUNIEC J, TRZCINSKI T. Deep alignment network: a convolutional neural network for robust face alignment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 88-97.
[33] KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1867-1874.
[34] WU Y, HASSNER T, KIM K G, et al. Facial landmark detection with tweaked convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 3067-3074.
[35] SINDEL A, MAIER A, CHRISTLEIN V. ArtFacePoints: high-resolution facial landmark detection in paintings and prints[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 298-313. |