[1] ZHU Y, PEI H, WANG L, et al. A vision-based autonomous landing method on mobile platform for UAV[C]//Proceedings of the 2023 42nd Chinese Control Conference, Nanjing, China, Jul 19-21, 2023. New York: IEEE, 2023: 4089-4094.
[2] CHEN C, CHEN S, HU G, et al. An auto-landing strategy based on pan-tilt based visual serving for unmanned aerial vehicle in GNSS-denied environments[J]. Aerospace Science and Technology, 2021, 116: 106891.
[3] 李丹, 邓飞, 赵良玉, 等. 基于深度学习的无人机自主降落标识检测方法[J]. 航空兵器, 2023, 30(5): 115-120.
LI D, DENG F, ZHAO L Y, et al. Detect on method of autonomous landing marker for UAV based on deep learning[J]. Aero Weaponry, 2023, 30(5): 115-120.
[4] CHEN J, ZHANG Y, LI J, et al. Integrated air-ground vehicles for UAV emergency landing based on graph convolution network[J]. IEEE Internet of Things Journal, 2021, 9(12): 9106-9116.
[5] 于雷健. 基于深度学习视觉导引的无人机路径规划及着陆系统研究[D]. 青岛: 中国石油大学, 2020.
YU L J. Deep learning oriented vision guidance systems for unmanned aerial vehicle path planning and landing[D]. Qingdao: China University of Petroleum, 2020.
[6] 张松松. 基于视觉的无人机自主着陆设计[D]. 呼和浩特: 内蒙古工业大学, 2022.
ZHANG S S. Vision-based design for autonomous UAV landing[D]. Hohhot: Inner Mongolia University of Technology, 2022.
[7] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, Oct 5-9, 2015. Cham: Springer International Publishing, 2015: 234-241.
[8] PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv:1606.02147, 2016.
[9] YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, Munich, Germany, Sep 8-14, 2018. Cham: Springer, 2018: 325-341.
[10] YU C, GAO C, WANG J, et al. BiSeNet v2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129: 3051-3068.
[11] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision, Munich, Germany, Sep 8-14, 2018. Cham: Springer, 2018: 801-818.
[12] PENG J, LIU Y, TANG S, et al. PP-LiteSeg: a superior real-time semantic segmentation model[J]. arXiv:2204.02681, 2022.
[13] XU J, XIONG Z, BHATTACHARYYA S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Rio de Janeiro, Brazil, Jun 19-24, 2023. New York: IEEE, 2023: 19529-19539.
[14] 尚克军, 郑辛, 王旒军, 等. 基于图像语义分割的无人机自主着陆导航方法[J]. 中国惯性技术学报, 2020, 28(5): 586-594.
SHANG K J, ZHENG X, WANG L J, et al. Image semantic segmentation-based navigation method for UAV auto-landing[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 586-594.
[15] PUTRANTO H Y, IRFANSYAH A N, ATTAMIMI M. Identification of safe landing areas with semantic segmentation and contour detection for delivery UAV[C]//Proceedings of the 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering, Bali, Indonesia, Oct 5-6, 2022. New York: IEEE, 2022: 254-257.
[16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, Jun 18-22, 2018. New York: IEEE, 2018: 8759-8768.
[17] KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, Jun 16-20, 2019. New York: IEEE, 2019: 6399-6408.
[18] CHENG B, COLLINS M D, ZHU Y, et al. Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, Jun 13-19, 2020. New York: IEEE, 2020: 12475-12485.
[19] PANDA M. Road boundary detection using 3D-to-2D transformation of LIDAR data and conditional generative adversarial networks[C]//Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies, Kharagpur, India, Jul 1-3, 2020. New York: IEEE, 2020: 1-6.
[20] WU J, XU H, SUN R, et al. Road boundary-enhanced automatic background filtering for roadside LiDAR sensors[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 14(4): 60-72.
[21] UDDIN N, HERMAWAN H, SITORUS F J P, et al. Lane detection system based on canny method for driving assistance[C]//Proceedings of the 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, Surabaya, Indonesia, Oct 17-18, 2023. New York: IEEE, 2023: 1-6.
[22] 冯樱, 乔宝山, 江子旺, 等. 基于模糊推理的换道决策与仿真验证[J]. 重庆交通大学学报 (自然科学版), 2023, 42(6): 155-162.
FENG Y, QIAO B S, JIANG Z W, et al. Lane change decision and simulation verification based on fuzzy reasoning[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(6): 155-162.
[23] 林鸿裕, 卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真[J]. 计算机仿真, 2024, 41(1): 513-517.
LIN H Y, LU G N. Simulation of waste treatment plant location based on fuzzy logic synthesis comprehensive evaluation[J]. Computer Simulation, 2024, 41(1): 513-517.
[24] 刘建娟, 刘忠璞, 张会娟, 等. 基于模糊控制蚁群算法的移动机器人路径规划[J]. 组合机床与自动化加工技术, 2023(1): 20-24.
LIU J J, LIU Z P, ZHANG H J, et al. Path planning of mobile robot based on fuzzy control ant colony algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(1): 20-24.
[25] FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, Jun 19-25, 2021. New York: IEEE, 2021: 9716-9725.
[26] NIGAM I, HUANG C, RAMANAN D. Ensemble knowledge transfer for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, Mar 12-15, 2018. New York: IEEE, 2018: 1499-1508.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, Munich, Germany, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. |