[1] ZHAO H, WANG C, LIN Y, et al. On-road vehicle trajectory collection and scene-based lane change analysis: part I[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(1): 192-205.
[2] SONATA I, HERYADI Y, LUKAS L, et al. Autonomous car using CNN deep learning algorithm[J]. Journal of Physics: Conference Series, 2021: 012071.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, ?2017, 39(6): 1137-1149.
[6] DJENOURI Y, BELHADI A, SRIVASTAVA G, et al. Vehicle detection using improved region convolution neural network for accident prevention in smart roads[J]. Pattern Recognition Letters, 2022, 158: 42-47.
[7] WANG B, JIANG P, GAO J, et al. A lightweight few-shot marine object detection network for unmanned surface vehicles[J]. Ocean Engineering, 2023, 277: 114329.
[8] LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6054-6063.
[9] HU M, WU Y, YANG Y, et al. DAGL-Faster: domain adaptive Faster R-CNN for vehicle object detection in rainy and foggy weather conditions[J]. Displays, 2023, 79: 102484.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer International Publishing, 2016: 21-37.
[12] BENJDIRA B, KHURSHEED T, KOUBAA A, et al. Car detection using unmanned aerial vehicles: comparison between Faster R-CNN and YOLOv3[C]//Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems, Oman, 2019: 1-6.
[13] AHMADI M, XU Z, WANG X, et al. Fast multi object detection and counting by YOLO V3[C]//Proceedings of the 2021 China Automation Congress, 2021: 7401-7404.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[15] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[17] JOCHE G, CHAURASIA A. Ultralytics/YOLOv5 in PyTorch[EB/OL].[2024-05-10]. https://github.com/ultralytics/yolov5.
[18] LI C, LI L, GENG Y, et al. YOLOv6 v3.0: a full-scale reloading[J]. arXiv:2301.05586, 2023.
[19]?XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022.
[20] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern, 2023: 7464-7475.
[22] HUANG S, HE Y, CHEN X. M-YOLO: a nighttime vehicle detection method combining MobileNet v2 and YOLO v3[J]. Journal of Physics: Conference Series, 2021: 012094.
[23] LI X, QIN Y, WANG F, et al. Pitaya detection in orchards using the MobileNet-YOLO model[C]//Proceedings of the 2020 39th Chinese Control Conference, 2020: 6274-6278.
[24] DONG X, YAN S, DUAN C. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914.
[25] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020.
[26] WOO S, PARK J, LEE J Y, et al, CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[27] BIE M, LIU Y, LI G, et al. Real-time vehicle detection algorithm based on a lightweight you-only-look-once (YOLOv5n-L) approach[J].?Expert Systems with Applications, 2023, 213: 119108.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[29] JOCHE G, CHAURASIA A. Ultralytics/YOLOv8 in PyTorch[EB/OL].[2024-05-10].https://github.com/ultralytics/ultralytic.
[30] GONG W. Lightweight object detection: a study based on YOLOv7 integrated with ShuffleNetv2 and vision Transformer[J]. arXiv:2403.01736, 2024.
[31] XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211.15444, 2022.
[32] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019. |