[1] KHOSHRAFTAR S, AN A J. A survey on graph representation learning methods[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(1): 1-55.
[2] CUI P, WANG X, PEI J, et al. A survey on network embedding[J]. IEEE Transactions on Knowledge & Data Engineering, 2019, 31(5): 833-852.
[3] 蹇松雷, 卢凯. 复杂异构数据的表征学习综述[J]. 计算机科学, 2020, 47(2): 1-9.
JIAN S L, LU K. Survey on representation learning of complex heterogeneous data[J]. Computer Science, 2020, 47(2): 1-9.
[4] CEN Y, ZOU X, ZHANG J, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19), 2019.
[5] 欧明栋. 面向大规模异构数据的哈希表征学习研究[D]. 北京: 清华大学, 2016.
OU M D. Hashing representation learning for massive heterogeneous data[D]. Beijing: Tsinghua University, 2016.
[6] LIU Z, HUANG C, YU Y, et al. Fast attributed multiplex heterogeneous network embedding[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM’20), 2020.
[7] PARK C, KIM D, HAN J, et al. Unsupervised attributed multiplex network embedding[J]. arXiv:1911.06750, 2019.
[8] LUO X, WANG H, WU D, et al. A survey on deep hashing methods[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-50.
[9] PEROZZI B, AL-RFOU R, SKIENA S S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), 2014.
[10] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[J]. arXiv:1607.00653, 2016.
[11] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web (WWW’15), 2015.
[12] QIU J, DONG Y, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, 2018.
[13] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[14] SCHLICHTKRULL M, KIPF T, BLOEM P, et al. Modeling relational data with graph convolutional networks[J]. arXiv:1703.06103v4, 2017.
[15] HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J]. arXiv:1706.02216, 2017.
[16] DONG Y, NITESH V C, ANANTHRAM S. metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17), 2017.
[17] SHI C, HU B, ZHAO W, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370.
[18] TANG J, QU M, MEI Q. PTE: predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15), 2015.
[19] ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19), 2019.
[20] HU B, FANG Y, SHI C. Adversarial learning on heterogeneous information networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19), 2019.
[21] YAO W, LI H Z. Heterogeneous attributed network embedding with graph convolutional networks[C]//Proceedings of the 2021 International Conference on Communications, Information System and Computer Engineering, 2021.
[22] ZHANG H, QIU L, YI L, et al. Scalable multiplex network embedding[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2018.
[23] LIU W Y, CHEN P Y, YEUNG S, et al. Principled multilayer network embedding[C]//Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017.
[24] QU M, TANG J, SHANG J, et al. An attention-based collaboration framework for multi-view network representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM’17), 2017: 1767-1776.
[25] SHI Y, HAN F, HE X R, et al. mvn2vec: preservation and collaboration in multi-view network embedding[J]. arXiv:1801.06597, 2018.
[26] YU P, FU C, YU Y, et al. Multiplex heterogeneous graph convolutional network[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’22), 2022.
[27] FU C, YU P, YU Y, et al. MHGCN+: multiplex heterogeneous graph convolutional network[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3): 1-25.
[28] 吕少卿, 王驰驰, 李婷婷, 等. 保留模体信息的属性二分图神经网络表示学习[J]. 计算机工程与应用, 2024, 60(10): 148-155.
LYU S Q, WANG C C, LI T T, et al. Attributed bipartite graph neural networks with motifs information for network representation learning[J]. Computer Engineering and Applications, 2024, 60(10): 148-155.
[29] YANG H, PAN S, ZHANG P, et al. Binarized attributed network embedding[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM), 2018.
[30] YANG H, PAN S, CHEN L, et al. Low-bit quantization for attributed network representation learning[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2020.
[31] WU W, LI B, CHEN L, et al. Efficient attributed network embedding via recursive randomized hashing[C]//Proceedings of the International Joint Conference on Artificial Intelligenc, 2018.
[32] WU W, LI B, LUO C, et al. Hashing-accelerated graph neural networks for link prediction[C]//Proceedings of the International Conference of World Wide Web, 2021.
[33] LEI T, JIN W G, BARZILAY R, et al. Deriving neural architectures from sequence and graph kernels[C]//Proceedings of the 34th International Conference on Machine Learning, 2017.
[34] WU W, LI B, LUO C, et al. MPSketch: message passing networks via randomized hashing for efficient attributed network embedding[J]. IEEE Transactions on Cybernetics, 2023, 54(5): 1-14. |