计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (15): 147-149.

• 图形图像处理 • 上一篇    下一篇

SIFT和改进的RANSAC算法在图像配准中的应用

罗文超,刘国栋,杨海燕   

  1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 出版日期:2013-08-01 发布日期:2013-07-31

Application of SIFT and advanced RANSAC algorithm on image registration

LUO Wenchao, LIU Guodong, YANG Haiyan   

  1. Key Lab of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2013-08-01 Published:2013-07-31

摘要: 在机器人视觉系统中运用SIFT描述子对现实世界中的目标进行识别,这一研究已经取得了很大的进步。运用SIFT生成的图像特征向量的性能十分稳定,对旋转、缩放、平移是保持不变性的,对一定程度目标遮挡、光照变化、视点变化、杂物场景和噪声等也能保持很好的不变性。RANSAC算法早就已经是计算机视觉领域常用的一个进行矫正的标准方法,在标准的RANSAC算法基础上加入了假设评价,改进为R-RANSAC(The Randomized RANSAC)算法。对这两个方面进行论述,运用SIFT(尺度不变特征变换)算法对双目机器人的两幅视觉图像进行匹配,采用带SPRT的R-RANSAC改进算法对匹配过程进行优化,尽可能在短的时间里完成匹配矫正,进而加速整个配准的时间。

关键词: 尺度不变特征变换(SIFT)描述子, 图像匹配, 图像配准, 随机抽样一致性, 顺序概率比测试

Abstract: There have been great advances in object recognition and image registration, through the match of invariant local image feature. With the feature of invariance to affine, 3D projection, scaling and rotation, illumination changes, image translation, the Scale Invariant Features Transform(SIFT) is commonly used in object recognition. The RANdom Sample Consensus(RANSAC) is widely used as robust estimator, as a standard in the field of computer vision. In the process of R-RANSAC, the Randomized(hypothesis evaluation) RANSAC, a modification is made to RANSAC by checking data points sequentially, while the standard RANSAC check all the data points in the model verification step. Own to this improvement, hypotheses with low support can be rejected before all points are considered. In addition, the Sequential Probability Ratios Test(SPRT) is used to minimize R-RANSAC runtime.

Key words: Scale Invariant Features Transform(SIFT) descriptor, image recognition, image registration, Randomized RANdom Sample Consensus(R-RANSAC), Sequential Probability Ratios Test(SPRT)