
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 1-19.DOI: 10.3778/j.issn.1002-8331.2502-0225
闫佳和,李红辉,孙婧,刘杰,张骏温,杨晓睿,徐邑
出版日期:2025-11-15
发布日期:2025-11-14
YAN Jiahe, LI Honghui, SUN Jing, LIU Jie, ZHANG Junwen, YANG Xiaorui, XU Yi
Online:2025-11-15
Published:2025-11-14
摘要: 近年来,深度学习在交通流预测中的应用受到了广泛关注,特别是时空图神经网络在捕捉时空依赖关系和交通特征预测等方面取得了显著成效。已有一些综述探讨了时空图神经网络的应用,但这些研究大多以应用场景为分类依据,未能从模型设计的角度提供深入的总结分析,更缺乏统一的模型分类体系。提出了一种综合考虑“模块选择、融合机制、架构设计、训练策略”的层次分类方法,并将时空图神经网络分为六类:循环图卷积网络、时空全卷积网络、时空注意力网络、时空编码器网络、时空混搭架构网络、附加策略时空网络。针对每一个类别,详细分析了其特有的模型建模方法、时空融合机制,并对比了主要变体的特点。通过分析代表性工作和最新工作,探讨了时空图神经网络的发展规律,并给出了开源模型的源代码地址。收集了常用的公开数据集,并在对比前人实验结果的基础上,对最新先进模型的性能进行可视化分析。最后总结了该领域的发展机遇与挑战,为后续研究提供启发。
闫佳和, 李红辉, 孙婧, 刘杰, 张骏温, 杨晓睿, 徐邑. 面向交通流预测的时空图神经网络发展综述[J]. 计算机工程与应用, 2025, 61(22): 1-19.
YAN Jiahe, LI Honghui, SUN Jing, LIU Jie, ZHANG Junwen, YANG Xiaorui, XU Yi. Review on Development of Spatio-Temporal Graph Neural Networks for Traffic Flow Prediction[J]. Computer Engineering and Applications, 2025, 61(22): 1-19.
| [1] JIANG W W, LUO J Y. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921. [2] BUI K N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774. [3] ABADAL S, JAIN A, GUIRADO R, et al. Computing graph neural networks: a survey from algorithms to accelerators[J]. ACM Computing Surveys, 2022, 54(9): 1-38. [4] ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 249-270. [5] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. [6] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. [7] 马帅, 刘建伟, 左信. 图神经网络综述[J]. 计算机研究与发展, 2022, 59(1): 47-80. MA S, LIU J W, ZUO X. Survey on graph neural network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80. [8] 熊章友, 李卫军, 朱晓娟, 等. 基于深度学习的短时交通流预测研究综述[J]. 计算机工程与应用, 2025, 61(11): 67-82. XIONG Z Y, LI W J, ZHU X J, et al. Short-term traffic flow prediction based on deep learning[J]. Computer Engineering and Applications, 2025, 61(11): 67-82. [9] 户佐安, 邓锦程, 韩金丽, 等. 图神经网络在交通预测中的应用综述[J]. 交通运输工程学报, 2023, 23(5): 39-61. HU Z A, DENG J C, HAN J L, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. [10] RICO J, BARATEIRO J, OLIVEIRA A. Graph neural networks for traffic forecasting[J]. arXiv:2104.13096, 2021. [11] YE J X, ZHAO J J, YE K J, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3904-3924. [12] YIN X Y, WU G Z, WEI J Z, et al. Deep learning on traffic prediction: methods, analysis, and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4927-4943. [13] ALSEHAIMI B, ALZAMZAMI O, ALOWIDI N, et al. An adaptive spatio-temporal traffic flow prediction using self-attention and multi-graph networks[J]. Sensors, 2025, 25(1): 282. [14] GAO A, ZHENG L J, WANG Z X, et al. Attention based short-term metro passenger flow prediction[C]//Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management. Cham: Springer, 2021: 598-609. [15] LEE K, RHEE W. DDP-GCN: multi-graph convolutional network for spatiotemporal traffic forecasting[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103466. [16] XU M X, DAI W R, LIU C M, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. arXiv:2001. 02908, 2020. [17] LV M Q, HONG Z X, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. [18] XIA T, LIN J J, LI Y, et al. 3DGCN: 3-dimensional dynamic graph convolutional network for city wide crowd flow prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(6): 1-21. [19] BAI L, YAO L N, KANHERE S S, et al. STG2Seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2019: 1981-1987. [20] YU B, LI M Z, ZHANG J Y, et al. 3D graph convolutional networks with temporal graphs: a spatial information free framework for traffic forecasting[J]. arXiv:1903.00919, 2019. [21] YU J J Q, GU J T. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3940-3951. [22] WANG Q, XU C, ZHANG W Q, et al. GraphTTE: travel time estimation based on attention-spatiotemporal graphs[J]. IEEE Signal Processing Letters, 2021, 28: 239-243. [23] BAI L, YAO L N, WANG X Z, et al. Deep spatial-temporal sequence modeling for multi-step passenger demand predi-ction[J]. Future Generation Computer Systems, 2021, 121: 25-34. [24] ZHANG J B, ZHENG Y, SUN J K, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 468-478. [25] YIN X Y, WU G Z, WEI J Z, et al. Multi-stage attention spatial-temporal graph networks for traffic prediction[J]. Neurocomputing, 2021, 428: 42-53. [26] YU B, LEE Y J, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204. [27] ZHAO F F, WANG W P, SUN H J, et al. Station-level short-term demand forecast of car sharing system via station-embedding-based hybrid neural network[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1-19. [28] ZHOU F, YANG Q, ZHONG T, et al. Variational graph neural networks for road traffic prediction in intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2802-2812. [29] ZHANG S K, GUO Y, ZHAO P Z, et al. A graph-based temporal attention framework for multi-sensor traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7743-7758. [30] CHEN H, HUANG J, LU Y, et al. Urban traffic flow prediction based on multi-spatio-temporal feature fusion[J]. Neurocomputing, 2025, 638: 130117. [31] RAHMANI S, BAGHBANI A, BOUGUILA N, et al. Graph neural networks for intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8846-8885. [32] LI M, LI M S, LIU B L, et al. Spatio-temporal traffic flow prediction based on coordinated attention[J]. Sustainability, 2022, 14(12): 7394. [33] ZI W J, XIONG W, CHEN H, et al. TAGCN: station-level demand prediction for bike-sharing system via a temporal attention graph convolution network[J]. Information Sciences, 2021, 561: 274-285. [34] ZHU J W, HAN X, DENG H H, et al. KST-GCN: a knowledge driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transport-ation Systems, 2022, 23(9): 15055-15065. [35] GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138-1149. [36] WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903. [37] CHEN W, LI Z P, LIU C, et al. A deep learning model with Conv-LSTM networks for subway passenger congestion delay prediction[J]. Journal of Advanced Transportation, 2021(1): 6645214. [38] MéNDEZ M, MERAYO M G, Nú?EZ M. Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106041. [39] YANG H Q, LI Z H, QI Y S. Predicting traffic propagation flow in urban road network with multi-graph convolutional net-work[J]. Complex & Intelligent Systems, 2024, 10(1): 23-35. [40] LONG W C, XIAO Z, WANG D, et al. Unified spatial-temporal neighbor attention network for dynamic traffic prediction[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1515-1529. [41] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017. [42] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. arXiv:1707.01926, 2017. [43] ZHANG J N, SHI X J, XIE J Y, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[C]//Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 2018: 339-349. [44] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Francisco: Morgan Kau-fmann, 2018: 3634-3640. [45] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representation, 2018. [46] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Francisco: Morgan Kaufmann, 2019: 1907-1913. [47] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241. [48] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. [49] PAN Z Y, LIANG Y X, WANG W F, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1720-1730. [50] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [51] BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc, 2020: 17804-17815. [52] LIU L B, CHEN J W, WU H F, et al. Physical-virtual collaboration modeling for intra- and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3377-3391. [53] WU Z H, PAN S R, LONG G D, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763. [54] PARK C, LEE C, BAHNG H, et al. ST-GRAT: a novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1215-1224. [55] SUN Y W, WANG Y L, FU K, et al. Constructing geographic and long-term temporal graph for traffic forecasting[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 3483-3490. [56] LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196. [57] YE J C, SUN L L, DU B W, et al. Coupled layer-wise graph convolution for transportation demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4617-4625. [58] TIAN C Y, CHAN W K. Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549-561. [59] TANG J B, QIAN T, LIU S J, et al. Spatio-temporal latent graph structure learning for traffic forecasting[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. [60] SHIN Y, YOON Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2082-2092. [61] SHAO Z Z, ZHANG Z, WEI W, et al. Decoupled dynamic spatial-temporal graph neural network for traffic forecasting[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 2733-2746. [62] SHAO Z Z, ZHANG Z, WANG F, et al. Pretraining enh-anced spatial-temporal graph neural network for multivariate time series forecasting[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1567-1577. [63] HUANG Q H, SHEN L, ZHANG R X, et al. CrossGNN: confronting noisy multivariate time series via cross interaction refinement[C]//Proceedings of the 37th Conference on Neural Information Processing Systems, 2023: 46885-46902. [64] LABLACK M, SHEN Y M. Spatio-temporal graph mixformer for traffic forecasting[J]. Expert Systems with Applications, 2023, 228: 120281. [65] LIU H C, DONG Z, JIANG R H, et al. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 4125-4129. [66] GUO S N, LIN Y F, GONG L T, et al. Self-supervised spatial-temporal bottleneck attentive network for efficient longterm traffic forecasting[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 1585-1596. [67] XING H, CHEN A, ZHANG X. RL-GCN: traffic flow pred-iction based on graph convolution and reinforcement learning for smart cities[J]. Displays, 2023, 80: 102513. [68] DENG P, ZHAO Y, LIU J T, et al. Spatio-temporal neural structural causal models for bike flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4242-4249. [69] LIU M Z, HUANG H, FENG H, et al. PriSTI: a conditional diffusion framework for spatiotemporal imputation[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 1927-1939. [70] WANG H J, CHEN J Y, PAN T, et al. Easy begun is half done: spatial-temporal graph modeling with ST-curriculum dropout[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4668-4675. [71] YAN J H, LI H H, ZHANG D L, et al. A multi-feature spatial temporal fusion network for traffic flow prediction[J]. Scientific Reports, 2024, 14: 14264. [72] CAI W L, LIANG Y X, LIU X G, et al. MSGNet: learning multi-scale inter-series correlations for multivariate time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(10): 11141-11149. [73] KONG W Y, GUO Z Y, LIU Y B. Spatio-temporal pivotal graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8627-8635. [74] WANG G Y, CHEN Y J, GAO M, et al. A time series is worth five experts: heterogeneous mixture of experts for traffic flow prediction[J]. arXiv:2409.17440, 2024. [75] YANG L H, CHEN W T, HE X X, et al. FedGTP: exploiting inter-client spatial dependency in federated graph-based traffic prediction[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 6105-6116. [76] CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894. [77] LI G P, KNOOP V L, VAN LINT H. Multistep traffic forecasting by dynamic graph convolution: interpretations of real-time spatial correlations[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103185. [78] CHEN L, SHAO W, LV M Q, et al. AARGNN: an attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17201-17211. [79] JIN D, SHI J Y, WANG R, et al. Trafformer: unify time and space in traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8114-8122. [80] YI Z C, ZHOU Z Y, HUANG Q H, et al. Get rid of isolation: a continuous multi-task spatio-temporal learning framework[J]. arXiv:2410.10524, 2024. [81] LI Z H, XIA L H, XU Y, et al. FlashST: a simple and universal prompt-tuning framework for traffic prediction[J]. arXiv:2405. 17898, 2024. [82] LEE H, KO S. TESTAM: a time-enhanced spatio-temporal attention model with mixture of experts[J]. arXiv:2403.02600, 2024. [83] CAI L, JANOWICZ K, MAI G C, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755. [84] JIANG R H, WANG Z N, YONG J W, et al. Spatio-temporal meta-graph learning for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8078-8086. [85] GAO H T, JIANG R H, DONG Z, et al. Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 3998-4006. [86] FAN J, WENG W C, TIAN H, et al. RGDAN: a random graph diffusion attention network for traffic prediction[J]. Neural Networks, 2024, 172: 106093. [87] LIU X, XIA Y T, LIANG Y X, et al. LargeST: a benchmark dataset for large-scale traffic forecasting[C]//Advances in Neural Information Processing Systems 36, 2023: 75354-75371. [88] HAN J D, ZHANG W J, LIU H, et al. BigST: linear complexity spatio-temporal graph neural network for traffic forecasting on large-scale road networks[J]. Proceedings of the VLDB Endowment, 2024, 17(5): 1081-1090. [89] LI Z H, XIA L H, XU Y, et al. GPT-ST: generative pre-training of spatio-temporal graph neural networks[C]//Advances in Neural Information Processing Systems 36, 2023: 70229-70246. [90] ALI A, ULLAH I, SINGH S K, et al. Energy-efficient res-ource allocation for urban traffic flow prediction in edge-cloud computing[J]. International Journal of Intelligent Systems, 2025(1): 1863025. [91] LI M H, TA X X, CHEN C. Trasnet: a lightweighting spatio-temporal attention network for traffic flow prediction[C]//Proceedings of the 2024 International Joint Conference on Neural Networks. Piscataway: IEEE, 2024: 1-7. [92] HU J, ZHENG T C, PENG L L, et al. LightST: a simplifying spatio-temporal graph neural network for traffic flow forecasting[J]. IEEE Transactions on Big Data, 2025. DOI: 10. 1109/TBDATA.2025.3544131. |
| [1] | 张建伟, 陈旭, 王叔洋, 景永俊, 宋吉飞. 时空图神经网络在物联网中的应用综述[J]. 计算机工程与应用, 2025, 61(5): 43-54. |
| [2] | 熊章友, 李卫军, 朱晓娟, 杨国梁, 马馨瑜. 基于深度学习的短时交通流预测研究综述[J]. 计算机工程与应用, 2025, 61(11): 67-82. |
| [3] | 肖培成, 曹阳, 沈琴琴, 施佺. 基于ARMA过滤器的时空图卷积网络短时交通流预测[J]. 计算机工程与应用, 2024, 60(21): 308-314. |
| [4] | 孟闯, 王慧, 林浩, 李科岑, 王鑫鹏. 道路交通流数据预测方法研究综述[J]. 计算机工程与应用, 2023, 59(14): 51-61. |
| [5] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
| [6] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
| [7] | 曹阳, 茅一波, 施佺. 日交通流预测的编码器-解码器深度学习模型研究[J]. 计算机工程与应用, 2022, 58(22): 284-290. |
| [8] | 王庆荣, 田可可, 朱昌锋, 魏怡萌. 融合多因素的短时交通流预测研究[J]. 计算机工程与应用, 2022, 58(21): 309-316. |
| [9] | 桂智明,李壮壮,郭黎敏. 基于ACGRU模型的短时交通流预测[J]. 计算机工程与应用, 2020, 56(21): 260-265. |
| [10] | 李彤伟,王庆荣. 路网交通流在时空分析背景下的预测研究[J]. 计算机工程与应用, 2020, 56(17): 258-265. |
| [11] | 罗向龙1,2,张生瑞1,牛力瑶2. 基于检测器优化选择的短时交通流预测[J]. 计算机工程与应用, 2017, 53(8): 199-202. |
| [12] | 张 军,王远强,朱新山. 改进PSO优化神经网络的短时交通流预测[J]. 计算机工程与应用, 2017, 53(14): 227-231. |
| [13] | 褚鹏宇,刘 澜,尹俊淞,卢维科. 融合时空信息的短时交通流预测[J]. 计算机工程与应用, 2016, 52(12): 246-250. |
| [14] | 李 宁1,2,王晓东1,2,侯俊峰3,黄国勇1,2. 冥函数变换在短时交通流组合预测中的应用[J]. 计算机工程与应用, 2013, 49(16): 240-243. |
| [15] | 张 锐1,2,张 涛3,高 辉4. RQEA-SVR在交通流预测中的应用[J]. 计算机工程与应用, 2010, 46(9): 241-245. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||