计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 1-19.DOI: 10.3778/j.issn.1002-8331.2502-0225

• 热点与综述 • 上一篇    下一篇

面向交通流预测的时空图神经网络发展综述

闫佳和,李红辉,孙婧,刘杰,张骏温,杨晓睿,徐邑   

  1. 1.北京交通大学 计算机科学与技术学院,北京 100044
    2.中国科学院 深圳先进技术研究院,广东 深圳 518055
  • 出版日期:2025-11-15 发布日期:2025-11-14

Review on Development of Spatio-Temporal Graph Neural Networks for Traffic Flow Prediction

YAN Jiahe, LI Honghui, SUN Jing, LIU Jie, ZHANG Junwen, YANG Xiaorui, XU Yi   

  1. 1.School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China
    2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 近年来,深度学习在交通流预测中的应用受到了广泛关注,特别是时空图神经网络在捕捉时空依赖关系和交通特征预测等方面取得了显著成效。已有一些综述探讨了时空图神经网络的应用,但这些研究大多以应用场景为分类依据,未能从模型设计的角度提供深入的总结分析,更缺乏统一的模型分类体系。提出了一种综合考虑“模块选择、融合机制、架构设计、训练策略”的层次分类方法,并将时空图神经网络分为六类:循环图卷积网络、时空全卷积网络、时空注意力网络、时空编码器网络、时空混搭架构网络、附加策略时空网络。针对每一个类别,详细分析了其特有的模型建模方法、时空融合机制,并对比了主要变体的特点。通过分析代表性工作和最新工作,探讨了时空图神经网络的发展规律,并给出了开源模型的源代码地址。收集了常用的公开数据集,并在对比前人实验结果的基础上,对最新先进模型的性能进行可视化分析。最后总结了该领域的发展机遇与挑战,为后续研究提供启发。

关键词: 交通流预测, 时空图神经网络, 时空依赖性, 模型设计, 模型分类标准

Abstract: In recent years, the application of deep learning in traffic flow prediction has attracted wide attention, especially the spatio-temporal graph neural network has achieved remarkable success in capturing spatio-temporal dependencies and predicting traffic characteristics. Although some reviews have examined the application of spatio-temporal graph neural networks, most of these studies focus primarily on application scenarios and fail to provide an in-depth analysis from the perspective of model design. Furthermore, a unified model classification framework is absent. This paper proposes a hierarchical classification method that considers the key elements such as module selection, fusion mechanism, architecture design, and training strategy. The spatio-temporal graph neural networks can be divided into six categories, namely recurrent graph convolutional network, spatio-temporal fully convolutional network, spatio-temporal attention network, spatio-temporal encoder network, spatio-temporal hybrid architecture network, and spatio-temporal networks with additional strategies. For each category, the unique model construction and fusion mechanisms are analyzed in detail, and the different model variants are compared. By analyzing both representative and recent works, the development trend of spatio-temporal graph neural networks is discussed, and the code addresses of open-source models are provided. Subsequently, the commonly used public datasets are gathered, and the performance of the latest advanced models is visually analyzed by comparing the results of previous experiments. Finally, the development opportunities and challenges in this field are summarized to offer insights for future research.

Key words: traffic flow prediction, spatio-temporal graph neural networks, spatio-temporal dependencies, model design, model classification criteria