计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 267-277.DOI: 10.3778/j.issn.1002-8331.2408-0216

• 图形图像处理 • 上一篇    下一篇

意象知识增强的社交媒体头像情感分析

刘俊岭,安宁,孙焕良,许景科
  

  1. 1.沈阳建筑大学 计算机科学与工程学院,沈阳 110168 
    2.辽宁省城市建设大数据管理与分析重点实验室,沈阳 110168
    3.国家特种计算机工程技术研究中心沈阳分中心,沈阳 110168
  • 出版日期:2025-11-15 发布日期:2025-11-14

Affection Analysis of Social Media Avatars Enhanced by Imagery Knowledge

LIU Junling, AN Ning, SUN Huanliang, XU Jingke   

  1. 1.School of Computer Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
    2.Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction, Shenyang 110168, China
    3.Shenyang Branch of National Special Computer Engineering Technology Research Center, Shenyang 110168, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 图像具有丰富的情感信息,这些信息可以被快速、直观地获取。头像作为一类特殊的图像,与用户的自我认知具有很强的关联性,用户通过头像内容所具有的意象来反映这种自我认知。然而现有的图像情感分析工作缺乏对于意象的考虑,因此在VAD情感模型基础上,扩展了意象情感维度,用于表示意象所反映的用户自我认知。为了衡量VAD情感和意象情感综合反映出的用户情感,引入心理能量度量。通过构建一个情感协同融合的心理能量预测模型学习图像特征和意象知识,利用注意力机制学习二者之间的相关性,分析头像心理能量。在真实数据集上进行实验,该模型心理能量维度的NDCG(normalized discounted cumulative gain)指标为0.499,优于其他表现最好的基线模型5.50%,验证了所提出方法的有效性。

关键词: 社交媒体头像, 意象, 心理能量, 情感分析

Abstract: Images contain rich affective information, which can be obtained quickly and intuitively. As a special type of image, avatars have a strong correlation with user’s self-cognition. Users reflect their self-cognition through the imagery contained in their avatars. However, the existing image affection analysis work lacks consideration of imagery. Therefore, on the basis of VAD affection model, this paper expands the imagery affection dimension to represent the user’s self-cognition reflected by the imagery. To measure the user’s affection reflected by VAD affection and imagery affection, psychological energy measurement is introduced. This paper proposes an affections collaborative fusion for psychological energy prediction model to analyze the psychological energy of avatars. The model learns image features and imagery knowledge, and uses attention mechanism to learn the correlation between them, thereby analyzing the psychological energy of avatars. The model is tested on the real dataset, and the NDCG (normalized discounted cumulative gain) of the psychological energy dimension is 0.499, which is 5.50% better than other best performing baseline models, verifying the effectiveness of the proposed method.

Key words: social media avatars, imagery, psychological energy, affection analysis