[1] 祝泽亚, 谢君, 王智. 未知环境下双机器人协同探索方法[J]. 电光与控制, 2020, 27(4): 32-37.
ZHU Z Y, XIE J, WANG Z. A method of dual robot collaborative exploration in unknown environment[J]. Electronics Optics & Control, 2020, 27(4): 32-37.
[2] 宁宇铭, 李团结, 姚聪, 等. 基于快速扩展随机树-贪婪边界搜索的多机器人协同空间探索方法[J]. 机器人, 2022, 44(6): 708-719.
NING Y M, LI T J, YAO C, et al. Multi-robot cooperative space exploration method based on rapidly-exploring random trees and greedy frontier-based exploration[J]. Robot, 2022, 44(6): 708-719.
[3] TANG J, LIU G, PAN Q T. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643.
[4] MIR I, GUL F, MIR S, et al. Multi-agent variational approach for robotics: a bio-inspired perspective[J]. Biomimetics, 2023, 8(3): 294.
[5] GARG V, SHUKLA A, TIWARI R. AERPSO: an adaptive exploration robotic PSO based cooperative algorithm for mult-iple target searching[J]. Expert Systems with Applications, 2022, 209: 118245.
[6] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 1998.
[7] ZHOU Q, LIAN Y, WU J Y, et al. An optimized Q-Learning algorithm for mobile robot local path planning[J]. Knowledge-Based Systems, 2024, 286: 111400.
[8] LIU I J, JAIN U, YEH R A, et al. Cooperative exploration for multi-agent deep reinforcement learning[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 6826-6836.
[9] OROOJLOOY A, HAJINEZHAD D. A review of cooperative multi-agent deep reinforcement learning[J]. Applied Intelligence, 2023, 53(11): 13677-13722.
[10] LI T Y, SHI D X, WANG Z, et al. Learning cooperative strategies in multi-agent encirclement games with faster prey using prior knowledge[J]. Neural Computing and Applications, 2024, 36(25): 15829-15842.
[11] 马佩鑫, 程钰, 侯健, 等. 基于多智能体深度强化学习的协作导航应用[J]. 计算机系统应用, 2023, 32(8): 95-104.
MA P X, CHENG Y, HOU J, et al. Cooperative navigation application based on multi-agent deep reinforcement learning[J]. Computer Systems and Applications, 2023, 32(8): 95-104.
[12] WANG X, WANG S, LIANG X X, et al. Deep reinforcement learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5064-5078.
[13] HAO J Y, YANG T P, TANG H Y, et al. Exploration in deep reinforcement learning: from single-agent to multiagent dom-ain[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 8762-8782.
[14] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems 30, 2017.
[15] LIU W Z, DONG L, NIU D, et al. Efficient exploration for multi-agent reinforcement learning via transferable successor features[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(9): 1673-1686.
[16] WAN K F, WU D W, LI B, et al. ME-MADDPG: an efficient learning-based motion planning method for multiple agents in complex environments[J]. International Journal of Intelligent Systems, 2022, 37(3): 2393-2427.
[17] LI B, WANG J M, SONG C, et al. Multi-UAV roundup strategy method based on deep reinforcement learning CEL-MADDPG algorithm[J]. Expert Systems with Applications, 2024, 245: 123018.
[18] XUE Y T, CHEN W S. Multi-agent deep reinforcement learning for UAVs navigation in unknown complex environment[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2290-2303.
[19] GU S D, KUBA J G, CHEN Y P, et al. Safe multi-agent reinforcement learning for multi-robot control[J]. Artificial Intelligence, 2023, 319: 103905.
[20] LI J, SHI X X, LI J H, et al. Random curiosity-driven exploration in deep reinforcement learning[J]. Neurocomputing, 2020, 418: 139-147.
[21] DAI T H, DU Y L, FANG M, et al. Diversity-augmented intrinsic motivation for deep reinforcement learning[J]. Neurocomputing, 2022, 468: 396-406.
[22] PATHAK D, AGRAWAL P, EFROS A A, et al. Curiosity-driven exploration by self-supervised prediction[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 488-489.
[23] BURDA Y, EDWARDS H, STORKEY A, et al. Exploration by random network distillation[J]. arXiv:1810.2894, 2018.
[24] ZHENG L L, CHEN J R, WANG J H, et al. Episodic multi-agent reinforcement learning with curiosity-driven exploration[C]//Advances in Neural Information Processing Systems 34, 2021: 3757-3769.
[25] XU F C, KANEKO T. Curiosity-driven exploration for cooperative multi-agent reinforcement learning[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-8.
[26] ALACAOGLU A, VIANO L, HE N, et al. A natural actor-critic framework for zero-sum Markov games[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 307-366.
[27] BORAWAR L, KAUR R. ResNet: solving vanishing gradient in deep networks[C]//Proceedings of International Conference on Recent Trends in Computing. Singapore: Springer, 2023: 235-247.
[28] YU C, VELU A, VINITSKY E, et al. The surprising effectiveness of PPO in cooperative, multi-agent games[C]//Advances in Neural Information Processing Systems 35, 2022: 24611-24624.
[29] XING X J, ZHOU Z W, LI Y, et al. Multi-UAV adaptive cooperative formation trajectory planning based on an improved MATD3 algorithm of deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 12484-12499.
[30] LI J, GAJANE P. Curiosity-driven exploration in sparse-reward multi-agent reinforcement learning[J]. arXiv:2302. 10825, 2023. |