[1] LIU J Z, DUAN L. A survey on knowledge graph-based recommender systems[C]//Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. Piscataway: IEEE, 2021: 2450-2453.
[2] 朱从飞, 任柯琦, 李卫政, 等. 水利知识图谱构建研究: 以宁波市为例[J]. 浙江水利科技, 2023, 51(6): 58-62.
ZHU C F, REN K Q, LI W Z, et al. Research on the construction of water resources knowledge graph: taking Ningbo City as an example[J]. Zhejiang Hydrotechnics, 2023, 51(6): 58-62.
[3] 李先旺, 黄忠祥, 贺德强, 等. 汽车故障知识图谱构建及应用研究[J]. 科学技术与工程, 2024, 24(4): 1578-1587.
LI X W, HUANG Z X, HE D Q, et al. Construction and application of failure knowledge graph in automobile field[J]. Science Technology and Engineering, 2024, 24(4): 1578-1587.
[4] 石致远, 孔志伟, 陈俊臻, 等. 风电设备情境知识图谱构建技术研究[J/OL]. 中国机械工程, 2024: 1-9(2024-04-03)[2024-05-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGJX2024032900D&dbname=CJFD&dbcode=CJFQ.
SHI Z Y, KONG Z W, CHEN J Z, et al. Research on the construction technology of situational knowledge map of wind power equipment[J/OL]. China Industrial Economics, 2024: 1-9(2024-04-03)[2024-05-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGJX2024032900D&dbname=CJFD&
dbcode=CJFQ.
[5] GAI X P, RUAN M Y, ZHANG H, et al. Construction technology of knowledge graph and its application in power grid[C]//Proceedings of the E3S Web of Conferences, 2021.
[6] 闻龙, 卢若谷, 种璟, 等. 医学知识图谱构建与应用的研究[J]. 长江信息通信, 2023, 36(10): 1-8.
WEN L, LU R G, ZHONG J, et al. Study on construction and application of medical knowledge map[J]. Changjiang Information & Communications, 2023, 36(10): 1-8.
[7] HARNOUNE A, RHANOUI M, MIKRAM M, et al. BERT based clinical knowledge extraction for biomedical knowledge graph construction and analysis[J]. Computer Methods and Programs in Biomedicine Update, 2021, 1: 100042.
[8] 靳淑雁, 王爽, 黄琼, 等. 基于乳腺癌专病库的知识图谱构建研究[J]. 医学信息学杂志, 2023, 44(12): 65-70.
JIN S Y, WANG S, HUANG Q, et al. Study on the construction of knowledge graph based on breast cancer specialized disease database[J]. Journal of Medical Informatics, 2023, 44(12): 65-70.
[9] TAN J Y, QIU Q Q, GUO W W, et al. Research on the construction of a knowledge graph and knowledge reasoning model in the field of urban traffic[J]. Sustainability, 2021, 13(6): 3191.
[10] ZHANG X Y, HUANG Y, ZHANG C J, et al. Geoscience knowledge graph (GeoKG): development, construction and challenges[J]. Transactions in GIS, 2022, 26(6): 2480-2494.
[11] ZHANG B, YIN C, LIU K, et al. Research on the construction of geographic knowledge graph integrating natural disaster information[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 10: 79-85.
[12] YU C L, WANG W Q, LIU X, et al. FolkScope: intention knowledge graph construction for E-commerce commonsense discovery[C]//Findings of the Association for Computational Linguistics, 2023: 1173-1191.
[13] 郑佳明, 陈家宾, 胡杰鑫, 等. 基于大模型和知识图谱的标准领域融合应用方法研究[J]. 中国标准化, 2023(23): 39-46.
ZHENG J M, CHEN J B, HU J X, et al. Research on integrated application methods in the field of standards based on foundation models and knowledge graphs[J]. China Standardization, 2023(23): 39-46.
[14] 张嘉宇, 郭玫, 张永亮, 等. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280.
ZHANG J Y, GUO M, ZHANG Y L, et al. Research on construction of fine-grained knowledge graph of apple diseases and pests[J]. Computer Engineering and Applications, 2023, 59(5): 270-280.
[15] EHRMANN M, HAMDI A, PONTES E L, et al. Named entity recognition and classification in historical documents: a survey[J]. ACM Computing Surveys, 2024, 56(2): 1-47.
[16] 任乐, 张仰森, 刘帅康. 基于深度学习的实体关系抽取研究综述[J]. 北京信息科技大学学报(自然科学版), 2023, 38(6): 70-79.
REN L, ZHANG Y S, LIU S K. Review of research on entity relation extraction based on deep learning[J]. Journal of Beijing Information Science & Technology University (Science and Technology Edition), 2023, 38(6): 70-79.
[17] LV J H, DU J P, ZHOU N, et al. BERT-BIGRU-CRF: a novel entity relationship extraction model[C]//Proceedings of the 2020 IEEE International Conference on Knowledge Graph. Piscataway: IEEE, 2020: 157-164.
[18] MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516.
[19] YANG X N, XIAO Y L. Named entity recognition based on BERT-MBiGRU-CRF and multi-head self-attention mechanism[C]//Proceedings of the 2022 4th International Conference on Natural Language Processing. Piscataway: IEEE, 2022: 178-183.
[20] CHEN Y. Convolutional neural network for sentence classification[D]. Waterloo: University of Waterloo, 2015.
[21] LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 10965-10973.
[22] WANG Z H, YANG B. Attention-based bidirectional long short-term memory networks for relation classification using knowledge distillation from BERT[C]//Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress. Piscataway: IEEE, 2020: 562-568.
[23] TIAN Y H, SONG Y, XIA F. Improving relation extraction through syntax-induced pre-training with dependency masking[C]//Findings of the Association for Computational Linguistics, 2022: 1875-1886.
[24] ZHANG D H, LIU Z Y, JIA W Q, et al. Dual attention graph convolutional network for relation extraction[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 530-543.
[25] ZHANG L, ZHANG H H, YUAN Y B. Dynamic hierarchical cascade tagging model for Chinese overlapping relation extraction[J]. Journal of East China University of Science and Technology, 2024, 50(3): 450-458.
[26] 叶乃夫, 袁得嵛, 张郅, 等. 基于交叉注意力的双通道文本关系抽取[J]. 数据分析与知识发现, 2024, 8(11): 114-125.
YE N F, YUAN D Y, ZHANG Z, et al. Dual channel text relation extraction based on cross attention[J]. Data Analysis and Knowledge Discovery, 2024, 8(11): 114-125. |