[1] JIANG M, HUANG S S, DUAN J Y, et al. SALICON: saliency in context[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1072-1080.
[2] 鹿天然, 于凤芹, 杨慧中, 等. 基于显著性检测和稠密轨迹的人体行为识别[J]. 计算机工程与应用, 2018, 54(14): 163-167.
LU T R, YU F Q, YANG H Z, et al. Human action recognition based on dense trajectories with saliency detection[J]. Computer Engineering and Applications, 2018, 54(14): 163-167.
[3] 潘沛鑫, 潘中良. 结合显著性的主动轮廓图像分割[J]. 计算机工程与应用, 2021, 57(8): 225-230.
PAN P X, PAN Z L. Active contour image segmentation combined with saliency[J]. Computer Engineering and Applications, 2021, 57(8): 225-230.
[4] GAO D S, MAHADEVANV, VASCONCELOS N. The discriminant center-surround hypothesis for bottom-up saliency[C]//Advances in Neural Information Processing Systems, 2008: 497-504.
[5] GUO C L, MA Q, ZHANG L M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[6] RAHTU E, KANNALA J, SALO M, et al. Segmenting salient objects from images and videos[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 366-379.
[7] WANG W, SHEN J, XIE J, et al. Revisiting video saliency prediction in the deep learning era[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2021, 43(1): 220-237.
[8] JIANG L, XU M, LIU T, et al. DeepVS: a deep learning based video saliency prediction approach[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 625-642.
[9] BAK C, KOCAK A, ERDEM E, et al. Spatio-temporal saliency networks for dynamic saliency prediction[J]. IEEE Transactions on Multimedia, 2018, 20(7): 1688-1698.
[10] JIANG L, XU M, WANG Z L. Predicting video saliency with object-to-motion CNN and two-layer convolutional LSTM[J]. arXiv:1709.06316, 2017.
[11] WANG W G, SHEN J B, GUO F, et al. Revisiting video saliency: a large-scale benchmark and a new model[J]. arXiv:1801.07424, 2018.
[12] MIN K, CORSO J. TASED-Net: temporally-aggregating spatial encoder-decoder network for video saliency detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2394-2403.
[13] BELLITTO G, SALANITRI P F, PALAZZO S, et al. Hierarchical domain-adapted feature learning for video saliency prediction[J]. International Journal of Computer Vision, 2021, 129(12): 3216-3232.
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[15] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[16] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 122-138.
[17] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946, 2019.
[18] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[19] 常振, 段先华, 鲁文超, 等. 基于多尺度的贝叶斯模型显著性检测[J]. 计算机工程与应用, 2020, 56(11): 207-213.
CHANG Z, DUAN X H, LU W C, et al. Multi-scale saliency detection based on Bayesian framework[J]. Computer Engineering and Applications, 2020, 56(11): 207-213.
[20] CHANG Q Y, ZHU S P. Human vision attention mechanism-inspired temporal-spatial feature pyramid for video saliency detection[J]. Cognitive Computation, 2023, 15(3): 856-868.
[21] CHEN Y P, FAN H Q, XU B, et al. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3434-3443.
[22] MATHE S, SMINCHISESCU C. Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(7): 1408-1424.
[23] RODRIGUEZ M D, AHMED J, SHAH M. Action MACH: a spatio-temporal maximum average correlation height filter for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[24] MARSZALEK M, LAPTEV I, SCHMID C. Actions in context[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2929-2936.
[25] WENGUAN WANG, JIANBING SHEN. Deep visual attention prediction[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2368-2378.
[26] LINARDOS P. Simple vs complex temporal recurrences for video saliency prediction[J]. arXiv:1907.01869, 2019. |