[1] CAO M Q, MA L, LI R Q. Automated visual inspection of solar cell images using adapted morphological and edge dete-ction algorithms[J]. Journal of Optics, 2024, 53(2): 1293-1301.
[2] 鲁东林, 王淑青, 鲁濠, 等. 一种改进Faster R-CNN的太阳能电池片缺陷检测方法[J]. 激光杂志, 2022, 43(3): 50-55.
LU D L, WANG S Q, LU H, et al. A defect detection method of solar cell based on improved Faster R-CNN[J]. Laser Journal, 2022, 43(3): 50-55.
[3] 伊力哈木·亚尔买买提, 邓皓, 谢丽蓉. 基于改进YOLOv4的太阳能电池板缺陷检测[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 21-30.
YILIHAMU Y, DENG H, XIE L R. Solar panel defect detection based on improved YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 21-30.
[4] 彭雪玲, 林珊玲, 林志贤, 等. 改进的YOLOv5s太阳能电池片缺陷检测算法[J]. 液晶与显示, 2024, 39(2): 237-247.
PENG X L, LIN S L, LIN Z X, et al. Defect detection algorithm of improved YOLOv5s solar cell[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(2): 237-247.
[5] 王淑青, 朱文鑫, 张子言, 等. 基于改进YOLOX-S的太阳能电池片表面缺陷检测[J]. 激光杂志, 2024, 45(7): 118-123.
WANG S Q, ZHU W X, ZHANG Z Y, et al. Surface defect detection of solar cells based on improved YOLOX-S[J]. Laser Journal, 2024, 45(7): 118-123.
[6] 周启宸, 王伯超. 基于改进YOLOv7的太阳能电池片表面缺陷检测[J]. 计算机应用, 2023, 43(S2): 223-228.
ZHOU Q C, WANG B C. Surface defect detection of solar cells based on improved YOLOv7[J]. Journal of Computer Applications, 2023, 43(S2): 223-228.
[7] 史册, 南新元. 改进InceptionV3与迁移学习的太阳能电池板缺陷识别[J]. 计算机工程与科学, 2023, 45(4): 646-653.
SHI C, NAN X Y. Improved InceptionV3 and transfer lear-ning for solar panel defect recognition[J]. Computer Engineering & Science, 2023, 45(4): 646-653.
[8] 于舜, 夏炎, 郭朋伟, 等. 一种基于深度卷积神经网络的太阳能电池片缺陷检测方法[J]. 传感技术学报, 2023, 36(7): 1165-1170.
YU S, XIA Y, GUO P W, et al. A defect detection method of solar cell based on deep convolutional neural network[J]. Chinese Journal of Sensors and Actuators, 2023, 36(7): 1165-1170.
[9] 张鹏飞, 王淑青, 黄剑锋, 等. 基于机器视觉的太阳能电池片表面缺陷检测[J]. 组合机床与自动化加工技术, 2022(8): 144-147.
ZHANG P F, WANG S Q, HUANG J F, et al. Surface defect detection method of solar cell based on vision[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(8): 144-147.
[10] VLAMINCK M, HEIDBUCHEL R, PHILIPS W, et al. Region-based CNN for anomaly detection in PV power plants using aerial imagery[J]. Sensors, 2022, 22(3): 1244.
[11] RODRIGUEZ-VAZQUEZ J, PRIETO-CENTENO I, FERNANDEZ-CORTIZAS M, et al. Real-time object detection for autonomous solar farm inspection via UAVs[J]. Sensors, 2024, 24(3): 777.
[12] HUANG J, ZENG K Y, ZHANG Z J, et al. Solar panel defect detection design based on YOLOv5 algorithm[J]. Heliyon, 2023, 9(8): e18826.
[13] DWIVEDI D, BABU K V S M, YEMULA P K, et al. Identification of surface defects on solar PV panels and wind turbine blades using attention based deep learning model[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107836.
[14] YANG X Y, ZHANG Q, WANG S Y, et al. Detection of solar panel defects based on separable convolution and convolutional block attention module[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(3): 7136-7149.
[15] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[17] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[18] GUO C X, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12592-12601.
[19] HUANG K, WU T, SU H, et al. MonoDTR: monocular 3D object detection with depth-aware transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4002-4011.
[20] LEE C Y, XIE S, GALLAGHER P, et al. Deeply-supervised nets[C]//Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, 2015: 562-570.
[21] WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv: 2105.04206, 2021.
[22] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
[23] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learnin, 2015: 448-456.
[24] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737.
[25] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
[26] DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1911-1920.
[27] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[28] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312. 17663, 2023.
[29] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929.
[30] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |