计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 258-268.DOI: 10.3778/j.issn.1002-8331.2405-0068

• 图形图像处理 • 上一篇    下一篇

基于多输入辅助分支训练的太阳能网版表面缺陷检测

吉训生,马佩珏   

  1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 出版日期:2025-08-01 发布日期:2025-07-31

Solar Cell Surface Defect Detection Based on Multi-Input Auxiliary Branch Training

JI Xunsheng, MA Peijue   

  1. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 针对太阳能网版表面缺陷检测存在目标小、类别数量不均衡和类别目标长宽比失衡问题,提出一种改进的GELAN-C的缺陷检测模型。增加多输入辅助分支和自主学习隐藏相关性融合模块,降低梯度传递深度,改善小目标检测能力。引入DBB重参数化模块构成多分支解耦头,增强末端特征图表达能力,提升类别数量少的样本检测精度。通过ShapeIoU损失函数提高长宽比失衡目标的拟合度。实验结果表明,改进的GELAN-C大小两种模型mAP50和mAP50-95分别为79.0%、50.4%、78.5%、50.2%,最终分别提升4.2、4.5、4.4、6.2个百分点,而参数量和计算量没有增加,实现了太阳能网版表面缺陷的实时高精度检测。

关键词: GELAN-C, 辅助训练, 重参数化, 隐式相关性, ShapeIoU

Abstract: Aiming at the problems of small targets, unbalanced number of categories and imbalance of category target aspect ratio in the detection of defects on the surface of solar stencil, an improved defect detection model of GELAN-C is proposed. The multi-input auxiliary branching and autonomous learning implicit correlation fusion module are added to reduce the gradient transfer depth and improve the small target detection capability. The DBB reparameterization module is introduced to constitute a multi-branch decoupling head, which enhances the end feature map expression ability and improves the detection accuracy of samples with a small number of categories, and also improves the fit of aspect ratio imbalance target by ShapeIoU loss function. The experimental results show that the mAP50 and mAP50-95 of the two improved GELAN-C size models are 79.0%, 50.4%, 78.5%, 50.2%, respectively, and ultimately improved by 4.2, 4.5, 4.4, and 6.2 percentage points, while the number of parameter counts and computation are not increased, realizing the real-time high-precision detection of defects on the surface of solar stencils.

Key words: GELAN-C, auxiliary training,  , reparameterization, implicit correlation, ShapeIoU