[1] ZHU G C, HE D B, AN H Y, et al. The governance technology for blockchain systems: a survey[J]. Frontiers of Computer Science, 2023, 18(2): 182813.
[2] CHEN X X, CHENG Q F, YANG W D, et al. An anonymous authentication and secure data transmission scheme for the Internet of Things based on blockchain[J]. Frontiers of Computer Science, 2024, 18(3): 183807.
[3] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. (2009-01-12) [2024-05-01]. https://bitcoin.org/bitcoin.pdf.
[4] 毕红亮, 陈艳姣, 伊心静, 等. 基于博弈的加密货币交易市场用户决策优化分析[J]. 软件学报, 2023, 34(12): 5477-5500.
BI H L, CHEN Y J, YI X J, et al. Game-based user decision optimization analysis of cryptocurrency trading market[J]. Journal of Software, 2023, 34(12): 5477-5500.
[5] 王茜, 朱俊伟, 张晓东. 链上链下数据协同下的政务材料共享设计实现[J]. 计算机工程与应用, 2023, 59(20): 333-342.
WANG Q, ZHU J W, ZHANG X D. Design and implementation of materials sharing related to government affairs based on on-chain and off-chain data collaboration[J]. Computer Engineering and Applications, 2023, 59(20): 333-342.
[6] 韦可欣, 李雷孝, 高昊昱, 等. 区块链访问控制技术在车联网中的应用研究综述与展望[J]. 计算机工程与应用, 2023, 59(24): 26-45.
WEI K X, LI L X, GAO H Y, et al. Review and prospect of blockchain access control technology in Internet of vehicles[J]. Computer Engineering and Applications, 2023, 59(24): 26-45.
[7] 蔡元海, 宋甫元, 黎凯, 等. 高判别精度的区块链交易合法性检测方法[J]. 计算机工程与应用, 2024, 60(5): 271-280.
CAI Y H, SONG F Y, LI K, et al. Blockchain transaction legitimacy discrimination with high recognition accuracy[J]. Computer Engineering and Applications, 2024, 60(5): 271-280.
[8] TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Multi-class Bitcoin-enabled service identification based on transaction history summarization[C]//Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data. Piscataway: IEEE, 2018: 1153-1160.
[9] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[10] LIN Y J, WU P W, HSU C H, et al. An evaluation of Bitcoin address classification based on transaction history summarization[C]//Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2019: 302-310.
[11] BARTOLETTI M, PES B, SERUSI S. Data mining for detecting Bitcoin Ponzi schemes[C]//Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology. Piscataway: IEEE, 2018: 75-84.
[12] HUANG Y H, WANG H Y, WU L, et al. Understanding (mis)behavior on the EOSIO blockchain[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2020, 4(2): 1-28.
[13] LIU X, TANG Z Y, LI P, et al. A graph learning based approach for identity inference in DApp platform blockchain[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 438-449.
[14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[15] LI Y, CAI Y, TIAN H, et al. Identifying illicit addresses in Bitcoin network[C]//Proceedings of the International Conference on Blockchain and Trustworthy Systems. Singapore: Springer Singapore, 2020: 99-111.
[16] WU J J, YUAN Q, LIN D, et al. Who are the phishers? phishing scam detection on ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156-1166.
[17] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[18] THEKUMPARAMPIL K K, WANG C, OH S, et al. Attention-based graph neural network for semi-supervised learning[J]. arXiv:1803.03735, 2018.
[19] HAMILTON W, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems (NIPS), 2017: 1-11.
[20] LI S J, GOU G P, LIU C, et al. TTAGN: temporal transaction aggregation graph network for ethereum phishing scams detection[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 661-669.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[22] 李大秋, 付章杰, 程旭, 等. 基于少样本学习的通用隐写分析方法[J]. 软件学报, 2022, 33(10): 3874-3890.
LI D Q, FU Z J, CHENG X, et al. Universal steganalysis based on few-shot learning[J]. Journal of Software, 2022, 33(10): 3874-3890.
[23] NAKAMURA A, HARADA T. Revisiting fine-tuning for few-shot learning[J]. arXiv:1910.00216, 2019.
[24] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv:1703.03400, 2017.
[25] BASU S, HU S, MASSICETI D, et al. Strong baselines for parameter-efficient few-shot fine-tuning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 11024-11031.
[26] ALSALEH A M, ALBALAWI E, ALGOSAIBI A, et al. Few-shot learning for medical image segmentation using 3D U-Net and model-agnostic meta-learning (MAML)[J]. Diagnostics, 2024, 14(12): 1213.
[27] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems, 2016: 1-9.
[28] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems (NIPS), 2017: 1-11.
[29] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208.
[30] KONG L C, DING X L, CHAI X Q, et al. Prototypical graph neural network for few-shot learning[C]//Proceedings of 2021 Chinese Intelligent Systems Conference. Singapore: Springer Singapore, 2021: 580-586.
[31] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems, 2013.
[32] LIN D, WU J J, HUANG T, et al. Who is who on ethereum? account labeling using heterophilic graph convolutional network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(3): 1541-1553.
[33] ZHOU J J, HU C K, CHI J L, et al. Behavior-aware account de-anonymization on ethereum interaction graph[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3433-3448.
[34] HU S H, ZHANG Z, LUO B Q, et al. BERT4ETH: a pre-trained transformer for ethereum fraud detection[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2189-2197.
[35] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017. |