[1] MENGASH H A, ALRUWAIS N, KOUKI F, et al. Archimedes optimization algorithm-based feature selection with hyb-rid deep-learning-based churn prediction in telecom industries[J]. Biomimetics, 2024, 9(1): 1.
[2] 周婉婷, 赵志杰, 刘阳, 等. 电子商务客户流失的DBN预测模型研究[J]. 计算机工程与应用, 2022, 58(11): 84-92.
ZHOU W T, ZHAO Z J, LIU Y, et al. Research on DBN prediction model of E-commerce customer churn[J]. Computer Engineering and Applications, 2022, 58(11): 84-92.
[3] GUPTA R K, BHARTI S, PATHIK N, et al. Predicting churn of credit card customers using machine learning and AutoML[J]. International Journal of Information Technology Project Management, 2022, 13(3): 1-19.
[4] VU V H. Predict customer churn using combination deep lear-ning networks model[J]. Neural Computing and Applications, 2024, 36(9): 4867-4883.
[5] RODRIGUES N M, BATISTA J E, CAVA W L, et al. Explo-ring SLUG: feature selection using genetic algorithms and genetic programming[J]. SN Computer Science, 2023, 5(1): 91.
[6] PUDJIHARTONO N, FADASON T, KEMPA-LIEHR A W, et al. A review of feature selection methods for machine learning-based disease risk prediction[J]. Frontiers in Bioinformatics, 2022, 2: 927312.
[7] PES B. Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains[J]. Neural Computing and Applications, 2020, 32(10): 5951-5973.
[8] DOKEROGLU T, DENIZ A, KIZILOZ H E. A comprehensive survey on recent metaheuristics for feature selection[J]. Neurocomputing, 2022, 494: 269-296.
[9] IDRIS N F, ISMAIL M A, JAYA M I M, et al. Stacking with recursive feature elimination-isolation forest for classification of diabetes mellitus[J]. PLoS One, 2024, 19(5): e0302595.
[10] FANG Y S, YAO Y, LIN X L, et al. A feature selection based on genetic algorithm for intrusion detection of industrial control systems[J]. Computers & Security, 2024, 139: 103675.
[11] ALSENANI T R, AYON S I, YOUSUF S M, et al. Intelligent feature selection model based on particle swarm optimization to detect phishing websites[J]. Multimedia Tools and Applications, 2023, 82(29): 44943-44975.
[12] JOSHI C, RANJAN R K, BHARTI V. ACNN-BOT: an ant colony inspired feature selection approach for ANN based botnet detection[J]. Wireless Personal Communications, 2023, 132(3): 1999-2021.
[13] 王优龙, 李维刚, 王永强. 基于集成特征选择和SVR的热连轧板凸度预测[J]. 钢铁, 2024, 59(1): 99-107.
WANG Y L, LI W G, WANG Y Q. Crown prediction of hot strip steel based on integrated feature selection and SVR[J]. Iron & Steel, 2024, 59(1): 99-107.
[14] GONZALEZ-FRANCO J D, PRECIADO-VELASCO J E, LOZANO-RIZK J E, et al. Comparison of supervised lear-ning algorithms on a 5G dataset reduced via principal component analysis (PCA)[J]. Future Internet, 2023, 15(10): 335.
[15] PALASH M P, AL M M, IBN A M, et al. An efficient hybrid feature selection model for dimensionality reduction[J].International Journal of Remote Sensing, 2021, 42(1): 286-321.
[16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[17] KHAN M A, RASOOL R U. A multi-objective grey-wolf optimization based approach for scheduling on cloud platforms[J]. Journal of Parallel and Distributed Computing, 2024, 187: 104847.
[18] ZHANG C, WANG S Z, WU Y, et al. A long-term prediction method for PM2.5 concentration based on spatiotemporal graph attention recurrent neural network and grey wolf optimiz-ation algorithm[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111716.
[19] ABDEL-BASSET M, EL-SHAHAT D, EL-HENAWY I, et al. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection[J]. Expert Systems with Applications, 2020, 139: 112824.
[20] FENG J X, SUN C L, ZHANG J H, et al. A UAV path planning method in three-dimensional space based on a hybrid gray wolf optimization algorithm[J]. Electronics, 2024, 13(1): 68.
[21] YILMAZ M, TURKEY E B Y U, DEDE T, et al. Investig-ating multi-objective time, cost, and risk problems using the grey wolf optimization algorithm[J]. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 2023(12): 79-86.
[22] MADHIARASAN M, DEEPA S N. Long-term wind speed forecasting using spiking neural network optimized by imp-roved modified grey wolf optimization algorithm[J]. International Journal of Advanced Research, 2016, 4(7): 356-368.
[23] 陈凯, 龚毅光. 混合多目标灰狼算法求解多目标VRPTW问题[J]. 计算机工程与应用, 2024, 60(11): 309-318.
CHEN K, GONG Y G. Hybrid multiple-objective grey wolf algorithm solving multi-objective vehicle routing problem with time windows[J]. Computer Engineering and Applic-ations, 2024, 60(11): 309-318.
[24] WANG J S, LI S X. An improved grey wolf optimizer based on differential evolution and elimination mechanism[J]. Scientific Reports, 2019, 9: 7181.
[25] 于涛, 丁海旭, 黄卫民, 等. 面向复杂异质数据的集成学习研究综述[J]. 控制工程, 2023, 30(8): 1425-1435.
YU T, DING H X, HUANG W M, et al. A survey of ense-mble learning for complex heterogeneous data[J]. Control Engineering of China, 2023, 30(8): 1425-1435.
[26] MATURO F, VERDE R. Pooling random forest and functional data analysis for biomedical signals supervised classification: theory and application to electrocardiogram data[J]. Statistics in Medicine, 2022, 41(12): 2247-2275.
[27] MIENYE I D, SUN Y X. A survey of ensemble learning: concepts, algorithms, applications, and prospects[J]. IEEE Access, 2022, 10: 99129-99149.
[28] KHOSHKROODI A, PARVINI SANI H, AAJAMI M. Stacking ensemble-based machine learning model for predicting deterioration components of steel W-section beams[J]. Buil-dings, 2024, 14(1): 240.
[29] MEI K, TAN M F, YANG Z H, et al. Modeling of feature selection based on random forest algorithm and Pearson correlation coefficient[J]. Journal of Physics: Conference Series, 2022, 2219(1): 012046.
[30] PHAM T M, PANDIS N, WHITE I R. Missing data: issues, concepts, methods[J]. Seminars in Orthodontics, 2024, 30(1): 37-44.
[31] DU W Y, WANG Y C, MENG G L, et al. Privacy-preser-ving vertical federated KNN feature imputation method[J]. Electronics, 2024, 13(2): 381. |