计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 185-194.DOI: 10.3778/j.issn.1002-8331.2402-0097

• 模式识别与人工智能 • 上一篇    下一篇

基于CWT和改进CBAM的手势识别方法

王丽春,张朝霞,符文林,陈帅,陈泓扬   

  1. 1.太原理工大学 电子信息与光学工程学院,太原 030024 
    2.太原理工大学 电气与动力工程学院,太原 030024
  • 出版日期:2025-06-01 发布日期:2025-05-30

Gesture Recognition Method Based on Continuous Wavelet Transform and Improved CBAM

WANG Lichun, ZHANG Zhaoxia, FU Wenlin, CHEN Shuai, CHEN Hongyang   

  1. 1.College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    2.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 手势作为一种交互方式,其动作简单直观、含义丰富,被广泛应用在各个领域。目前基于雷达的手势识别方法,大多采用短时傅里叶变换处理雷达回波信息,然而短时傅里叶变换窗口固定,不能同时提高时间分辨率和频率分辨率,为充分利用有效信息,提出采用连续小波变换处理雷达回波信号以提高手势识别精度。针对目前手势识别网络较为复杂,且受注意力机制能增强卷积神经网络特征表达的启发,提出一种基于改进CBAM(convolutional block attention module)注意力机制的手势识别网络。实验捕获了9种手势动作,建立了微多普勒图像数据集,结果表明,该方法实现简单,参数较少,识别准确率达到96.3%。

关键词: 手势识别, 注意力机制, 超宽带雷达, 连续小波变换(CWT)

Abstract: Gesture, as an interaction mode with simple and intuitive movements and rich meanings, is widely used in various fields. Most of the current radar-based gesture recognition methods use the short-time Fourier transform to process the radar echo information. However, the short-time Fourier transform window is fixed, and it cannot improve the time resolution and frequency resolution at the same time. To fully utilize the effective information, it is proposed to use the continuous wavelet transform to process the radar echo signals in order to improve the accuracy of gesture recognition. Aiming at the complexity of the current gesture recognition network and inspired by the fact that the attention mechanism can enhance the feature expression of convolutional neural network, a gesture recognition network based on the improved CBAM (convolutional block attention module) attention mechanism is proposed. Nine gestures are captured and a micro-Doppler image dataset is established. The results show that the method is simple to implement, has fewer parameters, and achieves a recognition accuracy of 96.3%.

Key words: gesture recognition, attention mechanism, ultra-wideband radar, continuous wavelet transform(CWT)