[1] OSEP A, MEHNER W, MATHIAS M, et al. Combined image-and world-space tracking in traffic scenes[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 1988-1995.
[2] DING M, CHEN W H, CAO Y F. Thermal infrared single-pedestrian tracking for advanced driver assistance system[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 814-824.
[3] FANG H Z, DING L, WANG L M, et al. Infrared small UAV target detection based on depthwise separable residual dense network and multiscale feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5019120.
[4] GADE R, MOESLUND T B. Thermal cameras and applications: a survey[J]. Machine Vision and Applications, 2014, 25(1): 245-262.
[5] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6931-6939.
[6] ZHANG L C, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Synthetic data generation for end-to-end thermal infrared tracking[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1837-1850.
[7] GAO P, MA Y P, SONG K, et al. Large margin structured convolution operator for thermal infrared object tracking[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 2380-2385.
[8] ZHANG H, YIN Z Y, ZHANG H L. Thermal infrared object tracking using correlation filters improved by level set[J]. Signal, Image and Video Processing, 2023, 17(3): 791-797.
[9] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing. Cham: Springer International Publishing, 2016: 850-865.
[10] DONG X P, SHEN J B. Triplet loss in Siamese network for object tracking[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 472-488.
[11] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980.
[12] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4277-4286.
[13] WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1328-1338.
[14] CHEN R M, LIU S J, MIAO Z, et al. GFSNet: generalization-friendly Siamese network for thermal infrared object tracking[J]. Infrared Physics & Technology, 2022, 123: 104190.
[15] YAO T T, HU J C, ZHANG B, et al. Scale and appearance variation enhanced Siamese network for thermal infrared target tracking[J]. Infrared Physics & Technology, 2021, 117: 103825.
[16] HUANG Y P, HE Y J, LU R T, et al. Thermal infrared object tracking via unsupervised deep correlation filters[J]. Digital Signal Processing, 2022, 123: 103432.
[17] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[18] 成浩维, 资文杰, 彭双, 等. 基于半监督学习的三维Mesh建筑物立面提取与语义分割方法[J]. 郑州大学学报 (理学版), 2023, 55(4): 8-15.
CHENG H W, ZI W J, PENG S, et al. Semi-supervised learning based 3D mesh building facade extraction and semantic segmentation method[J]. Journal of Zhengzhou University (Natural Science Edition), 2023, 55(4): 8-15.
[19] 王浩桐, 郭中华. 锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11): 2596-2608.
WANG H T, GUO Z H. Target detection of SSD aircraft remote sensing images based on anchor frame strategy matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2596-2608.
[20] 云飞, 殷雁君, 张文轩, 等. 融合注意力机制的对抗式半监督语义分割[J]. 计算机工程与应用, 2023, 59(8): 254-262.
YUN F, YIN Y J, ZHANG W X, et al. Adversarial semi-supervised semantic segmentation with attention mechanism[J]. Computer Engineering and Applications, 2023, 59(8): 254-262.
[21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[22] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995.
[23] XIAO B, XU B C, BI X L, et al. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion[J]. IEEE Transactions on Image Processing, 2021, 30: 163-175.
[24] DING X Y, LIN W S, CHEN Z Z, et al. Point cloud saliency detection by local and global feature fusion[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5379-5393.
[25] LI C L, CHENG H, HU S Y, et al. Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5743-5756.
[26] ZHANG W H, JIAO L C, LI Y X, et al. Sparse learning-based correlation filter for robust tracking[J]. IEEE Transactions on Image Processing, 2021, 30: 878-891.
[27] PENG C, ZHANG X Y, YU G, et al. Large kernel matters: improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1743-1751.
[28] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149.
[29] 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395.
WANG Y, LYU Y P. Hybrid deep CNN-attention for hyperspectral image classification[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395.
[30] 梁义涛, 韩永波, 李磊. 深度长时目标跟踪算法综述[J]. 计算机工程与应用, 2023, 59(4): 1-17.
LIANG Y T, HAN Y B, LI L. Survey on deep-learning-based long-term object tracking algorithms[J]. Computer Engineering and Applications, 2023, 59(4): 1-17.
[31] ZHANG L C, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for Siamese trackers[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4009-4018.
[32] LIU Q, LI X, HE Z Y, et al. LSOTB-TIR: a large-scale high-diversity thermal infrared object tracking benchmark[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3847-3856.
[33] LIU Q, HE Z Y, LI X, et al. PTB-TIR: a thermal infrared pedestrian tracking benchmark[J]. IEEE Transactions on Multimedia, 2020, 22(3): 666-675.
[34] DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4310-4318.
[35] DANELLJAN M, H?GER G, KHAN F, et al. Accurate scale estimation for robust visual tracking [C]//Proceedings of the British Machine Vision Conference. Nottingham: Bmva Press, 2014.
[36] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4904-4913.
[37] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293-4302.
[38] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4660-4669.
[39] SONG Y, MA C, WU X, et al. Vital: visual tracking via adversarial learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8990-8999.
[40] BHAT G, DANELLJAN M, GOOL L V, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6182-6191. |