计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (20): 31-34.DOI: 10.3778/j.issn.1002-8331.2009.20.009
王映龙1,杨 珺2,周法国1,唐建军2
WANG Ying-long1,YANG Jun2,ZHOU Fa-guo1,TANG Jian-jun2
摘要: 如何从大量的图中挖掘出令人感兴趣的子图模式已经成为数据挖掘领域研究的热点之一。传统的频繁子图挖掘方法对满足最小支持度阈值的子图同等对待,但在真实数据库中不同的子图往往具有不同的重要程度。为解决上述问题,提出了一种深度优先的挖掘加权最大频繁子图的新算法。首先给出了一种新的用于计算图的邻接矩阵规范编码的结点排序策略,大大降低了求图规范编码的复杂度,并可以加速子图规范编码匹配的速度。其次,给出了加权最大频繁子图的定义,不仅可以找出较为重要的最大频繁子图,而且可以使挖掘结果同样具有反单调性,从而可加速剪枝。实验结果表明,提出的算法不仅可以有效地减少挖掘结果的数量,而且具有较高的效率。